library(Quandl)
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
Quandl.api_key('4-KG5x_Vo7rXzmZNAHch')

library("tseries")
library("urca")
rsf <- Quandl("FRED/RSAFS", type="zoo")
lrsf <- log(rsf)
dlrsf <- diff(lrsf)
rsfin <- ur.za(dlrsf, model ="intercept", lag = 2)
summary(rsfin)
## 
## ################################ 
## # Zivot-Andrews Unit Root Test # 
## ################################ 
## 
## 
## Call:
## lm(formula = testmat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.041913 -0.004756  0.000623  0.004939  0.058728 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  8.620e-03  1.566e-03   5.505 8.37e-08 ***
## y.l1        -1.715e-01  1.132e-01  -1.515 0.130894    
## trend       -4.366e-05  1.171e-05  -3.728 0.000234 ***
## y.dl1        2.285e-02  8.987e-02   0.254 0.799509    
## y.dl2       -9.090e-04  5.933e-02  -0.015 0.987787    
## du           6.634e-03  2.095e-03   3.166 0.001716 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.009598 on 279 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.05951,    Adjusted R-squared:  0.04265 
## F-statistic: 3.531 on 5 and 279 DF,  p-value: 0.004121
## 
## 
## Teststatistic: -10.348 
## Critical values: 0.01= -5.34 0.05= -4.8 0.1= -4.58 
## 
## Potential break point at position: 207
rsftr <- ur.za(dlrsf, model = "trend", lag = 2)
summary(rsftr)
## 
## ################################ 
## # Zivot-Andrews Unit Root Test # 
## ################################ 
## 
## 
## Call:
## lm(formula = testmat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.042286 -0.004704  0.000907  0.005557  0.058716 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  7.136e-03  1.537e-03   4.644 5.27e-06 ***
## y.l1        -1.048e-01  1.120e-01  -0.936   0.3499    
## trend       -2.758e-05  1.098e-05  -2.511   0.0126 *  
## y.dl1       -1.864e-02  8.973e-02  -0.208   0.8356    
## y.dl2       -1.953e-02  5.971e-02  -0.327   0.7438    
## dt           5.858e-05  3.612e-05   1.622   0.1060    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.009723 on 279 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.03482,    Adjusted R-squared:  0.01752 
## F-statistic: 2.013 on 5 and 279 DF,  p-value: 0.07696
## 
## 
## Teststatistic: -9.8681 
## Critical values: 0.01= -4.93 0.05= -4.42 0.1= -4.11 
## 
## Potential break point at position: 201

Part II

pc <- Quandl("FRED/DNDGRG3M086SBEA", type = "zoo")
str(pc)
## 'zooreg' series from Jan 1959 to Jan 2016
##   Data: num [1:685] 19.9 19.9 19.9 19.9 19.9 ...
##   Index: Class 'yearmon'  num [1:685] 1959 1959 1959 1959 1959 ...
##   Frequency: 12
plot(pc, xlab = "Periods", ylab = "consumption")

lpc <- log(pc)
dlpc <- diff(lpc)
pcin <- ur.za(dlpc, model = "intercept", lag = 2)
summary(pcin)
## 
## ################################ 
## # Zivot-Andrews Unit Root Test # 
## ################################ 
## 
## 
## Call:
## lm(formula = testmat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.037686 -0.002492 -0.000169  0.002384  0.023808 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.692e-03  4.408e-04   3.838 0.000136 ***
## y.l1         3.717e-01  4.801e-02   7.741 3.61e-14 ***
## trend       -6.566e-06  1.529e-06  -4.294 2.02e-05 ***
## y.dl1        1.041e-01  4.325e-02   2.406 0.016398 *  
## y.dl2       -3.066e-02  3.847e-02  -0.797 0.425838    
## du           2.766e-03  7.067e-04   3.913 0.000100 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.005087 on 675 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.2396, Adjusted R-squared:  0.234 
## F-statistic: 42.54 on 5 and 675 DF,  p-value: < 2.2e-16
## 
## 
## Teststatistic: -13.088 
## Critical values: 0.01= -5.34 0.05= -4.8 0.1= -4.58 
## 
## Potential break point at position: 161
pctr <- ur.za(dlpc, model = "trend", lag = 2)
summary(pctr)
## 
## ################################ 
## # Zivot-Andrews Unit Root Test # 
## ################################ 
## 
## 
## Call:
## lm(formula = testmat)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.037789 -0.002461 -0.000174  0.002199  0.023926 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -2.966e-04  7.100e-04  -0.418 0.676274    
## y.l1         3.593e-01  4.846e-02   7.414 3.68e-13 ***
## trend        2.014e-05  5.298e-06   3.802 0.000157 ***
## y.dl1        1.117e-01  4.338e-02   2.575 0.010246 *  
## y.dl2       -2.499e-02  3.853e-02  -0.649 0.516827    
## dt          -2.678e-05  6.280e-06  -4.265 2.28e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.005076 on 675 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.2428, Adjusted R-squared:  0.2372 
## F-statistic: 43.28 on 5 and 675 DF,  p-value: < 2.2e-16
## 
## 
## Teststatistic: -13.2231 
## Critical values: 0.01= -4.93 0.05= -4.42 0.1= -4.11 
## 
## Potential break point at position: 178

Part III

pm <- Quandl("FRED/CES3000000008", type= "zoo")
pi <- Quandl("FRED/PCECTPI", type= "zoo")
plot(pm, xlab = "Periods", ylab = "Earnings")

plot(pi, xlab = "Periods", ylab ="consumption")

pmi <- pm/pi
## Warning in merge.zoo(e1, e2, all = FALSE, retclass = NULL): Index vectors
## are of different classes: yearmon yearqtr
lpmi <- log(pmi)
plot(pmi)

plot(lpmi)

lpmiin <- ur.za(lpmi, model = "intercept", lag = 2)
summary(lpmiin)
## 
## ################################ 
## # Zivot-Andrews Unit Root Test # 
## ################################ 
## 
## 
## Call:
## lm(formula = testmat)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -0.0245103 -0.0036251  0.0002947  0.0033922  0.0259721 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -4.742e-02  1.230e-02  -3.855 0.000145 ***
## y.l1         9.760e-01  5.448e-03 179.136  < 2e-16 ***
## trend        4.856e-05  1.934e-05   2.510 0.012652 *  
## y.dl1       -1.137e-01  5.962e-02  -1.907 0.057625 .  
## y.dl2        1.890e-02  5.950e-02   0.318 0.750989    
## du          -4.550e-03  1.846e-03  -2.464 0.014353 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.007068 on 267 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.9988, Adjusted R-squared:  0.9988 
## F-statistic: 4.412e+04 on 5 and 267 DF,  p-value: < 2.2e-16
## 
## 
## Teststatistic: -4.4124 
## Critical values: 0.01= -5.34 0.05= -4.8 0.1= -4.58 
## 
## Potential break point at position: 141
lpmitr <- ur.za(lpmi, model = "trend", lag =2)
summary(lpmitr)
## 
## ################################ 
## # Zivot-Andrews Unit Root Test # 
## ################################ 
## 
## 
## Call:
## lm(formula = testmat)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -0.0250702 -0.0032966 -0.0001494  0.0035131  0.0257378 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.059126   0.020770  -2.847  0.00476 ** 
## y.l1         0.978992   0.005292 184.996  < 2e-16 ***
## trend        0.002837   0.002043   1.388  0.16618    
## y.dl1       -0.097273   0.059881  -1.624  0.10546    
## y.dl2        0.037990   0.059971   0.633  0.52697    
## dt          -0.002821   0.002041  -1.382  0.16806    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.007122 on 267 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.9988, Adjusted R-squared:  0.9987 
## F-statistic: 4.345e+04 on 5 and 267 DF,  p-value: < 2.2e-16
## 
## 
## Teststatistic: -3.9697 
## Critical values: 0.01= -4.93 0.05= -4.42 0.1= -4.11 
## 
## Potential break point at position: 7
adf.test(lpmi)
## 
##  Augmented Dickey-Fuller Test
## 
## data:  lpmi
## Dickey-Fuller = -3.4725, Lag order = 6, p-value = 0.04582
## alternative hypothesis: stationary