library("Quandl")
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
library("tseries")
#1()Log transformed Retail and Food Services Sales FRED/RSAFS
ret<-Quandl("FRED/RSAFS", type="zoo")
lret<-log(ret)
par(mfrow=c(1,2))
plot(lret,xlab="Time", ylab="lret")
acf(lret,lag=12)
pacf(lret,lag=12)
#Acf shows very slowely decaying.from the plot and acf,we can see that data are nonstationary time series.so we will take difference for the log#
dlret<-diff(lret,1)
plot(dlret,xlab="Time", ylab="dlret")
#we made stationarity by removing time trend#
#now we will Use Zivot-Andrews test to analyze the presence of a unit root and structural breaks#
# Zivot-Andrews Unit Root Test #
library(urca)
dlret.ur.za <- ur.za(dlret, model="intercept")
summary(dlret.ur.za)
##
## ################################
## # Zivot-Andrews Unit Root Test #
## ################################
##
##
## Call:
## lm(formula = testmat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.041348 -0.004687 0.000487 0.005258 0.058832
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.151e-03 1.381e-03 5.903 1.02e-08 ***
## y.l1 -1.418e-01 5.880e-02 -2.411 0.016527 *
## trend -4.082e-05 1.107e-05 -3.688 0.000271 ***
## du 6.291e-03 2.027e-03 3.104 0.002100 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.009557 on 283 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.05593, Adjusted R-squared: 0.04593
## F-statistic: 5.589 on 3 and 283 DF, p-value: 0.000976
##
##
## Teststatistic: -19.4178
## Critical values: 0.01= -5.34 0.05= -4.8 0.1= -4.58
##
## Potential break point at position: 207
# du capture break level and it is significant, so there is level break#
library(urca)
dlret.ur.za <- ur.za(dlret, model="trend")
summary(dlret.ur.za)
##
## ################################
## # Zivot-Andrews Unit Root Test #
## ################################
##
##
## Call:
## lm(formula = testmat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.042397 -0.004596 0.000906 0.005455 0.058688
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.019e-03 1.380e-03 5.087 6.63e-07 ***
## y.l1 -1.207e-01 5.898e-02 -2.047 0.0416 *
## trend -2.647e-05 1.053e-05 -2.513 0.0125 *
## dt 5.651e-05 3.545e-05 1.594 0.1120
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.009675 on 283 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.03247, Adjusted R-squared: 0.02222
## F-statistic: 3.166 on 3 and 283 DF, p-value: 0.02488
##
##
## Teststatistic: -19.0013
## Critical values: 0.01= -4.93 0.05= -4.42 0.1= -4.11
##
## Potential break point at position: 201
#dt capture break in trend.here, dt is not significant.so there is not break in trend#
#2()Log transformed Personal consumption expenditures: Nondurable goods (chain-type price index)#
pce<-Quandl("FRED/DNDGRG3M086SBEA", type="zoo")
lpce<-log(pce)
par(mfrow=c(1,2))
plot(lpce,xlab="Time", ylab="lpce")
acf(lpce,lag=12)
pacf(lpce,lag=12)
#Acf shows very slowely decaying.from the plot and acf,we can see that data are nonstationary time series.so we will take difference for the log#
dlpce<-diff(lpce,1)
plot(dlpce,xlab="Time", ylab="dlpce")
#we made stationarity by removing time trend#
#now we will Use Zivot-Andrews test to analyze the presence of a unit root and structural breaks#
# Zivot-Andrews Unit Root Test #
library(urca)
dlpce.ur.za <- ur.za(dlpce, model="intercept")
summary(dlpce.ur.za)
##
## ################################
## # Zivot-Andrews Unit Root Test #
## ################################
##
##
## Call:
## lm(formula = testmat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.039497 -0.002393 -0.000126 0.002315 0.022933
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.541e-03 4.312e-04 3.574 0.000377 ***
## y.l1 4.218e-01 3.478e-02 12.126 < 2e-16 ***
## trend -6.061e-06 1.501e-06 -4.037 6.03e-05 ***
## du 2.567e-03 6.959e-04 3.688 0.000244 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.005112 on 679 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.2279, Adjusted R-squared: 0.2245
## F-statistic: 66.82 on 3 and 679 DF, p-value: < 2.2e-16
##
##
## Teststatistic: -16.624
## Critical values: 0.01= -5.34 0.05= -4.8 0.1= -4.58
##
## Potential break point at position: 161
# du capture break level and it is significant, so there is level break#
library(urca)
dlpce.ur.za <- ur.za(dlpce, model="trend")
summary(dlpce.ur.za)
##
## ################################
## # Zivot-Andrews Unit Root Test #
## ################################
##
##
## Call:
## lm(formula = testmat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.039595 -0.002356 -0.000150 0.002173 0.023049
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.566e-04 7.004e-04 -0.366 0.714205
## y.l1 4.160e-01 3.492e-02 11.914 < 2e-16 ***
## trend 1.830e-05 5.140e-06 3.559 0.000398 ***
## dt -2.437e-05 6.078e-06 -4.010 6.74e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.005103 on 679 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.2307, Adjusted R-squared: 0.2273
## F-statistic: 67.87 on 3 and 679 DF, p-value: < 2.2e-16
##
##
## Teststatistic: -16.7268
## Critical values: 0.01= -4.93 0.05= -4.42 0.1= -4.11
##
## Potential break point at position: 178
#dt capture break in trend.here, dt is not significant.so there is not break in trend#
#3()
ahep<-Quandl("FRED/DNDGRG3M086SBEA", type="zoo")
pcec<-Quandl("FRED/PCECTPI", type="zoo")
rwph<-ahep/pcec
## Warning in merge.zoo(e1, e2, all = FALSE, retclass = NULL): Index vectors
## are of different classes: yearmon yearqtr
lrwph<-log(rwph)
par(mfrow=c(1,2))
plot(lrwph,xlab="Time", ylab="lrwph")
dlrwph<-diff(lrwph,3)
par(mfrow=c(1,2))
plot(dlrwph,xlab="Time", ylab="dlrwph")
#we made stationarity by removing time trend#
#now we will Use Zivot-Andrews test to analyze the presence of a unit root and structural breaks#
# Zivot-Andrews Unit Root Test #
library(urca)
dlrwph.ur.za <- ur.za(dlrwph, model="intercept")
summary(dlrwph.ur.za)
##
## ################################
## # Zivot-Andrews Unit Root Test #
## ################################
##
##
## Call:
## lm(formula = testmat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.064461 -0.003474 -0.000454 0.003796 0.031664
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.536e-03 1.287e-03 -1.193 0.234
## y.l1 -7.722e-02 6.713e-02 -1.150 0.251
## trend 3.688e-05 1.794e-05 2.056 0.041 *
## du -5.586e-03 2.403e-03 -2.325 0.021 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.00934 on 222 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.02682, Adjusted R-squared: 0.01367
## F-statistic: 2.039 on 3 and 222 DF, p-value: 0.1093
##
##
## Teststatistic: -16.0466
## Critical values: 0.01= -5.34 0.05= -4.8 0.1= -4.58
##
## Potential break point at position: 89
# du capture break level and it is significant, so there is level break#
library(urca)
dlrwph.ur.za <- ur.za(dlrwph, model="trend")
summary(dlrwph.ur.za)
##
## ################################
## # Zivot-Andrews Unit Root Test #
## ################################
##
##
## Call:
## lm(formula = testmat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.064536 -0.003444 -0.000455 0.004481 0.031424
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.505e-03 1.300e-03 -1.157 0.2484
## y.l1 -6.795e-02 6.702e-02 -1.014 0.3118
## trend 9.658e-06 1.043e-05 0.926 0.3554
## dt -5.313e-04 2.728e-04 -1.948 0.0527 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.009373 on 222 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.01989, Adjusted R-squared: 0.00664
## F-statistic: 1.501 on 3 and 222 DF, p-value: 0.2151
##
##
## Teststatistic: -15.9353
## Critical values: 0.01= -4.93 0.05= -4.42 0.1= -4.11
##
## Potential break point at position: 211
#dt capture break in trend.here, dt is significant.so there is break in trend. but du is stronger than dt. so, we suggest that there is level break.
ح