library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggvis)

# get cleaned up data (removed some rows for duplicates, nonsense reponses, etc.)
df <- read.delim("~/Downloads/Copy of Salaries (Responses) - Form Responses 1 (2).tsv")

df %>%
  ggvis(~Years.Experience, ~Monthly.Base.Pay) %>%
  layer_points() %>%
  layer_model_predictions(model = "lm", se = TRUE)
## Guessing formula = Monthly.Base.Pay ~ Years.Experience

df %>%
  ggvis(~Years.Company, ~Monthly.Base.Pay) %>%
  layer_points() %>%
  layer_model_predictions(model = "lm", se = TRUE)
## Guessing formula = Monthly.Base.Pay ~ Years.Company

# Some descriptive stats

df %>%
  group_by(Location) %>%
  summarise(count = n()) %>%
  arrange(desc(count))
## Source: local data frame [45 x 2]
## 
##        Location count
##          (fctr) (int)
## 1        Makati    22
## 2                  19
## 3   Quezon City    10
## 4        Manila     9
## 5       Ortigas     6
## 6         Pasig     6
## 7          Cebu     4
## 8  Metro Manila     4
## 9   Philippines     4
## 10          BGC     3
## ..          ...   ...
desc.count <- df %>%
  mutate(Developer = grepl('developer', Job.Title, ignore.case = TRUE)) %>%
  mutate(Engineer = grepl('engineer', Job.Title, ignore.case = TRUE)) %>%
  mutate(Manager = grepl('manager', Job.Title, ignore.case = TRUE)) %>%
  mutate(Artist = grepl('artist', Job.Title, ignore.case = TRUE)) %>%
  mutate(Frontend = grepl('frontend', Job.Title, ignore.case = TRUE))
summary(desc.count[,12:16])
##  Developer        Engineer        Manager          Artist       
##  Mode :logical   Mode :logical   Mode :logical   Mode :logical  
##  FALSE:62        FALSE:105       FALSE:125       FALSE:125      
##  TRUE :66        TRUE :23        TRUE :3         TRUE :3        
##  NA's :0         NA's :0         NA's :0         NA's :0        
##   Frontend      
##  Mode :logical  
##  FALSE:127      
##  TRUE :1        
##  NA's :0