SWAN


SBP Average


Call:
geeglm(formula = sbp_formula1, data = gee_data, id = gee_data$ID, 
    corstr = "ar1")

 Coefficients:
                     Estimate  Std.err    Wald Pr(>|W|)    
(Intercept)          62.27618  5.48688 128.823  < 2e-16 ***
AGE0                  0.75332  0.08943  70.952  < 2e-16 ***
bmi                   0.64967  0.04015 261.827  < 2e-16 ***
cum_avg_unfair        0.31290  0.16734   3.496  0.06150 .  
diabete              -1.60113  0.83554   3.672  0.05533 .  
edu_g                -0.88023  1.83918   0.229  0.63223    
heartat_stroke       -1.34761  0.98359   1.877  0.17066    
med_bp               -4.91736  0.53947  83.088  < 2e-16 ***
med_other            -0.09668  0.32502   0.088  0.76612    
SITE12               -0.43867  1.00349   0.191  0.66200    
SITE13                5.64384  1.13009  24.942 5.91e-07 ***
SITE14               -4.19106  1.01899  16.916 3.91e-05 ***
SITE15               -3.08560  1.02842   9.002  0.00270 ** 
SITE16                5.38211  1.06197  25.685 4.02e-07 ***
SITE17               -2.94452  1.03584   8.081  0.00447 ** 
statusx               0.12649  0.09931   1.623  0.20274    
smoker                1.38332  0.63309   4.774  0.02889 *  
visit                 0.62419  0.04974 157.467  < 2e-16 ***
cum_avg_unfair:edu_g -0.12500  0.10680   1.370  0.24182    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)    196.7    6.32

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate  Std.err
alpha   0.8592 0.006294
Number of clusters:   2200   Maximum cluster size: 12 

Call:
geeglm(formula = sbp_formula2, data = gee_data, id = gee_data$ID, 
    corstr = "ar1")

 Coefficients:
                 Estimate Std.err   Wald Pr(>|W|)    
(Intercept)       65.8911  4.6284 202.67  < 2e-16 ***
AGE0               0.7530  0.0894  70.99  < 2e-16 ***
bmi                0.6527  0.0403 262.23  < 2e-16 ***
chronicity         3.7865  2.1640   3.06   0.0802 .  
diabete           -1.5873  0.8364   3.60   0.0577 .  
edu_g             -2.0601  0.7716   7.13   0.0076 ** 
heartat_stroke    -1.3396  0.9839   1.85   0.1733    
med_bp            -4.9250  0.5395  83.34  < 2e-16 ***
med_other         -0.0988  0.3250   0.09   0.7613    
SITE12            -0.5246  1.0010   0.27   0.6002    
SITE13             5.4858  1.1294  23.59  1.2e-06 ***
SITE14            -4.3038  1.0147  17.99  2.2e-05 ***
SITE15            -3.2540  1.0285  10.01   0.0016 ** 
SITE16             4.9304  1.0289  22.96  1.7e-06 ***
SITE17            -3.0539  1.0341   8.72   0.0031 ** 
statusx            0.1265  0.0993   1.63   0.2024    
smoker             1.3839  0.6326   4.79   0.0287 *  
visit              0.6186  0.0497 155.13  < 2e-16 ***
chronicity:edu_g  -2.0121  1.3212   2.32   0.1278    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)      197    6.35

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha     0.86 0.00632
Number of clusters:   2200   Maximum cluster size: 12 

DBP Average


Call:
geeglm(formula = dbp_formula1, data = gee_data, id = gee_data$ID, 
    corstr = "ar1")

 Coefficients:
                     Estimate  Std.err   Wald Pr(>|W|)    
(Intercept)          50.78944  3.41791 220.81  < 2e-16 ***
AGE0                  0.19323  0.05478  12.44  0.00042 ***
bmi                   0.35799  0.02525 200.95  < 2e-16 ***
cum_avg_unfair        0.19664  0.10813   3.31  0.06898 .  
diabete              -1.21344  0.53019   5.24  0.02210 *  
edu_g                -0.08266  1.18953   0.00  0.94460    
heartat_stroke       -0.31530  0.66710   0.22  0.63647    
med_bp               -2.96794  0.34384  74.51  < 2e-16 ***
med_other            -0.00275  0.22967   0.00  0.99045    
SITE12                7.15347  0.57049 157.23  < 2e-16 ***
SITE13                7.75121  0.64117 146.15  < 2e-16 ***
SITE14                1.54714  0.58652   6.96  0.00834 ** 
SITE15                4.42618  0.59626  55.11  1.1e-13 ***
SITE16                8.56510  0.63931 179.49  < 2e-16 ***
SITE17                2.28265  0.58051  15.46  8.4e-05 ***
statusx              -0.00840  0.06991   0.01  0.90438    
smoker                0.11337  0.41434   0.07  0.78438    
visit                 0.08547  0.03287   6.76  0.00932 ** 
cum_avg_unfair:edu_g -0.07140  0.06865   1.08  0.29830    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)     82.9    2.16

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha     0.83 0.00721
Number of clusters:   2200   Maximum cluster size: 12 

Call:
geeglm(formula = dbp_formula2, data = gee_data, id = gee_data$ID, 
    corstr = "ar1")

 Coefficients:
                 Estimate  Std.err   Wald Pr(>|W|)    
(Intercept)      53.21113  2.86045 346.05  < 2e-16 ***
AGE0              0.19346  0.05468  12.52  0.00040 ***
bmi               0.35958  0.02535 201.25  < 2e-16 ***
chronicity        2.00551  1.31847   2.31  0.12824    
diabete          -1.20310  0.53011   5.15  0.02324 *  
edu_g            -0.87680  0.47485   3.41  0.06482 .  
heartat_stroke   -0.31025  0.66740   0.22  0.64203    
med_bp           -2.97223  0.34376  74.76  < 2e-16 ***
med_other        -0.00405  0.22972   0.00  0.98594    
SITE12            7.08915  0.56919 155.12  < 2e-16 ***
SITE13            7.66274  0.64019 143.27  < 2e-16 ***
SITE14            1.47374  0.58398   6.37  0.01162 *  
SITE15            4.33345  0.59542  52.97  3.4e-13 ***
SITE16            8.26464  0.61069 183.15  < 2e-16 ***
SITE17            2.21834  0.57931  14.66  0.00013 ***
statusx          -0.00851  0.06993   0.01  0.90318    
smoker            0.11324  0.41454   0.07  0.78473    
visit             0.08140  0.03267   6.21  0.01273 *  
chronicity:edu_g -0.86454  0.81622   1.12  0.28951    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)     82.9    2.18

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.831 0.00726
Number of clusters:   2200   Maximum cluster size: 12 

HTN


Call:
geeglm(formula = htn_formula1, family = poisson(link = "log"), 
    data = gee_data, id = gee_data$ID, corstr = "ar1")

 Coefficients:
                     Estimate  Std.err   Wald Pr(>|W|)    
(Intercept)          -6.32966  0.67229  88.64  < 2e-16 ***
AGE0                  0.06265  0.01038  36.45  1.6e-09 ***
bmi                   0.03512  0.00388  81.74  < 2e-16 ***
cum_avg_unfair        0.02365  0.02241   1.11   0.2913    
diabete               0.08580  0.06764   1.61   0.2047    
edu_g                -0.22992  0.26627   0.75   0.3879    
heartat_stroke        0.02750  0.10081   0.07   0.7850    
med_other             0.10232  0.03829   7.14   0.0075 ** 
SITE12               -0.03536  0.09383   0.14   0.7063    
SITE13                0.18798  0.09395   4.00   0.0454 *  
SITE14               -0.48414  0.11942  16.44  5.0e-05 ***
SITE15               -0.29067  0.11167   6.78   0.0092 ** 
SITE16                0.20289  0.12367   2.69   0.1009    
SITE17               -0.22449  0.10218   4.83   0.0280 *  
statusx               0.00927  0.01209   0.59   0.4433    
smoker               -0.06829  0.06867   0.99   0.3200    
visit                 0.10834  0.00585 343.46  < 2e-16 ***
cum_avg_unfair:edu_g  0.00260  0.01475   0.03   0.8599    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)     0.73  0.0609

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.841  0.0213
Number of clusters:   2200   Maximum cluster size: 12 

Risk Ratios:
                     Estimate    Wald Pr(>|W|)
AGE0                    1.065  36.446    0.000
bmi                     1.036  81.742    0.000
cum_avg_unfair          1.024   1.114    0.291
diabete                 1.090   1.609    0.205
edu_g                   0.795   0.746    0.388
heartat_stroke          1.028   0.074    0.785
med_other               1.108   7.140    0.008
SITE12                  0.965   0.142    0.706
SITE13                  1.207   4.003    0.045
SITE14                  0.616  16.436    0.000
SITE15                  0.748   6.776    0.009
SITE16                  1.225   2.692    0.101
SITE17                  0.799   4.827    0.028
statusx                 1.009   0.588    0.443
smoker                  0.934   0.989    0.320
visit                   1.114 343.456    0.000
cum_avg_unfair:edu_g    1.003   0.031    0.860

Call:
geeglm(formula = htn_formula2, family = poisson(link = "log"), 
    data = gee_data, id = gee_data$ID, corstr = "ar1")

 Coefficients:
                 Estimate  Std.err   Wald Pr(>|W|)    
(Intercept)      -5.98062  0.53519 124.88  < 2e-16 ***
AGE0              0.06274  0.01034  36.81  1.3e-09 ***
bmi               0.03545  0.00388  83.56  < 2e-16 ***
chronicity        0.13910  0.24029   0.34   0.5627    
diabete           0.08906  0.06811   1.71   0.1910    
edu_g            -0.18774  0.10044   3.49   0.0616 .  
heartat_stroke    0.02958  0.10185   0.08   0.7715    
med_other         0.10292  0.03848   7.16   0.0075 ** 
SITE12           -0.06035  0.09340   0.42   0.5182    
SITE13            0.16497  0.09295   3.15   0.0759 .  
SITE14           -0.50539  0.11806  18.33  1.9e-05 ***
SITE15           -0.32833  0.10957   8.98   0.0027 ** 
SITE16            0.10027  0.11504   0.76   0.3834    
SITE17           -0.25253  0.10125   6.22   0.0126 *  
statusx           0.00910  0.01212   0.56   0.4531    
smoker           -0.06629  0.06785   0.95   0.3286    
visit             0.10731  0.00583 339.08  < 2e-16 ***
chronicity:edu_g  0.01823  0.15636   0.01   0.9072    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)    0.728  0.0585

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.842  0.0207
Number of clusters:   2200   Maximum cluster size: 12 

Risk Ratios:
                 Estimate    Wald Pr(>|W|)
AGE0                1.065  36.806    0.000
bmi                 1.036  83.559    0.000
chronicity          1.149   0.335    0.563
diabete             1.093   1.710    0.191
edu_g               0.829   3.494    0.062
heartat_stroke      1.030   0.084    0.772
med_other           1.108   7.156    0.007
SITE12              0.941   0.417    0.518
SITE13              1.179   3.150    0.076
SITE14              0.603  18.326    0.000
SITE15              0.720   8.979    0.003
SITE16              1.105   0.760    0.383
SITE17              0.777   6.221    0.013
statusx             1.009   0.563    0.453
smoker              0.936   0.954    0.329
visit               1.113 339.084    0.000
chronicity:edu_g    1.018   0.014    0.907


SBP Average Caucasian


Call:
geeglm(formula = sbp_formula1, data = race_data, id = race_data$ID, 
    corstr = "ar1")

 Coefficients:
                     Estimate Std.err   Wald Pr(>|W|)    
(Intercept)           61.8993  7.1732  74.46  < 2e-16 ***
AGE0                   0.6207  0.1143  29.51  5.6e-08 ***
bmi                    0.7030  0.0493 203.64  < 2e-16 ***
cum_avg_unfair         0.2906  0.2695   1.16    0.281    
diabete               -0.8318  1.3550   0.38    0.539    
edu_g                  1.9682  2.6211   0.56    0.453    
heartat_stroke        -2.0641  1.2518   2.72    0.099 .  
med_bp                -4.1954  0.7522  31.11  2.4e-08 ***
med_other             -0.1636  0.3774   0.19    0.665    
statusx               -0.0282  0.1204   0.05    0.815    
smoker                 0.5851  0.6809   0.74    0.390    
visit                  0.5855  0.0612  91.50  < 2e-16 ***
cum_avg_unfair:edu_g  -0.2140  0.1573   1.85    0.174    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)      165    8.99

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.871  0.0124
Number of clusters:   1130   Maximum cluster size: 12 

Call:
geeglm(formula = sbp_formula2, data = race_data, id = race_data$ID, 
    corstr = "ar1")

 Coefficients:
                 Estimate Std.err   Wald Pr(>|W|)    
(Intercept)       65.7761  5.7694 129.98  < 2e-16 ***
AGE0               0.6192  0.1144  29.29  6.2e-08 ***
bmi                0.7038  0.0494 203.33  < 2e-16 ***
chronicity         2.2498  3.0491   0.54    0.461    
diabete           -0.8366  1.3553   0.38    0.537    
edu_g             -0.7871  0.9359   0.71    0.400    
heartat_stroke    -2.0700  1.2517   2.74    0.098 .  
med_bp            -4.2058  0.7527  31.23  2.3e-08 ***
med_other         -0.1656  0.3775   0.19    0.661    
statusx           -0.0265  0.1205   0.05    0.826    
smoker             0.5883  0.6809   0.75    0.388    
visit              0.5880  0.0608  93.49  < 2e-16 ***
chronicity:edu_g  -1.8470  1.7666   1.09    0.296    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)      165    8.98

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.871  0.0124
Number of clusters:   1130   Maximum cluster size: 12 

DBP Average Caucasian


Call:
geeglm(formula = dbp_formula1, data = race_data, id = race_data$ID, 
    corstr = "ar1")

 Coefficients:
                     Estimate Std.err   Wald Pr(>|W|)    
(Intercept)           52.0390  4.7513 119.96  < 2e-16 ***
AGE0                   0.1840  0.0764   5.80    0.016 *  
bmi                    0.3943  0.0344 131.23  < 2e-16 ***
cum_avg_unfair         0.1709  0.1820   0.88    0.348    
diabete               -1.7735  0.7924   5.01    0.025 *  
edu_g                  2.3786  1.7991   1.75    0.186    
heartat_stroke        -0.2529  0.8393   0.09    0.763    
med_bp                -2.9479  0.5234  31.72  1.8e-08 ***
med_other             -0.1048  0.2756   0.14    0.704    
statusx               -0.0384  0.0907   0.18    0.672    
smoker                -0.4718  0.5083   0.86    0.353    
visit                  0.0953  0.0416   5.25    0.022 *  
cum_avg_unfair:edu_g  -0.1331  0.1071   1.54    0.214    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)     78.9    3.56

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.854  0.0121
Number of clusters:   1130   Maximum cluster size: 12 

Call:
geeglm(formula = dbp_formula2, data = race_data, id = race_data$ID, 
    corstr = "ar1")

 Coefficients:
                 Estimate Std.err   Wald Pr(>|W|)    
(Intercept)       54.6117  3.8896 197.13  < 2e-16 ***
AGE0               0.1832  0.0766   5.72    0.017 *  
bmi                0.3951  0.0345 130.79  < 2e-16 ***
chronicity         0.5802  1.9592   0.09    0.767    
diabete           -1.7743  0.7926   5.01    0.025 *  
edu_g              0.4823  0.6212   0.60    0.438    
heartat_stroke    -0.2576  0.8390   0.09    0.759    
med_bp            -2.9561  0.5238  31.85  1.7e-08 ***
med_other         -0.1059  0.2757   0.15    0.701    
statusx           -0.0372  0.0907   0.17    0.682    
smoker            -0.4684  0.5091   0.85    0.358    
visit              0.0974  0.0412   5.59    0.018 *  
chronicity:edu_g  -0.7129  1.1659   0.37    0.541    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)       79    3.56

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.855   0.012
Number of clusters:   1130   Maximum cluster size: 12 

HTN Caucasian


Call:
geeglm(formula = htn_formula1, family = poisson(link = "log"), 
    data = race_data, id = race_data$ID, corstr = "ar1")

 Coefficients:
                     Estimate  Std.err   Wald Pr(>|W|)    
(Intercept)          -8.25223  1.10470  55.80    8e-14 ***
AGE0                  0.05420  0.01755   9.53    0.002 ** 
bmi                   0.05361  0.00536 100.12   <2e-16 ***
cum_avg_unfair        0.07522  0.03922   3.68    0.055 .  
diabete               0.18834  0.13309   2.00    0.157    
edu_g                 0.74524  0.42991   3.01    0.083 .  
heartat_stroke        0.04600  0.22036   0.04    0.835    
med_other             0.14618  0.06465   5.11    0.024 *  
statusx              -0.01510  0.01920   0.62    0.432    
smoker               -0.14045  0.16714   0.71    0.401    
visit                 0.12499  0.01087 132.16   <2e-16 ***
cum_avg_unfair:edu_g -0.04402  0.02489   3.13    0.077 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)    0.774   0.138

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.823  0.0476
Number of clusters:   1130   Maximum cluster size: 12 

Risk Ratios:
                     Estimate    Wald Pr(>|W|)
AGE0                    1.056   9.534    0.002
bmi                     1.055 100.118    0.000
cum_avg_unfair          1.078   3.678    0.055
diabete                 1.207   2.003    0.157
edu_g                   2.107   3.005    0.083
heartat_stroke          1.047   0.044    0.835
med_other               1.157   5.113    0.024
statusx                 0.985   0.619    0.432
smoker                  0.869   0.706    0.401
visit                   1.133 132.157    0.000
cum_avg_unfair:edu_g    0.957   3.129    0.077

Call:
geeglm(formula = htn_formula2, family = poisson(link = "log"), 
    data = race_data, id = race_data$ID, corstr = "ar1")

 Coefficients:
                 Estimate  Std.err   Wald Pr(>|W|)    
(Intercept)      -6.96348  0.89367  60.72  6.6e-15 ***
AGE0              0.05264  0.01759   8.95   0.0028 ** 
bmi               0.05302  0.00537  97.52  < 2e-16 ***
chronicity        0.09335  0.42674   0.05   0.8268    
diabete           0.18776  0.13320   1.99   0.1587    
edu_g             0.03699  0.15569   0.06   0.8122    
heartat_stroke    0.04497  0.21905   0.04   0.8373    
med_other         0.14509  0.06467   5.03   0.0249 *  
statusx          -0.01497  0.01918   0.61   0.4351    
smoker           -0.13740  0.16550   0.69   0.4064    
visit             0.12450  0.01086 131.50  < 2e-16 ***
chronicity:edu_g -0.03269  0.25636   0.02   0.8985    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)    0.773   0.138

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.823  0.0475
Number of clusters:   1130   Maximum cluster size: 12 

Risk Ratios:
                 Estimate    Wald Pr(>|W|)
AGE0                1.054   8.951    0.003
bmi                 1.054  97.520    0.000
chronicity          1.098   0.048    0.827
diabete             1.207   1.987    0.159
edu_g               1.038   0.056    0.812
heartat_stroke      1.046   0.042    0.837
med_other           1.156   5.033    0.025
statusx             0.985   0.609    0.435
smoker              0.872   0.689    0.406
visit               1.133 131.503    0.000
chronicity:edu_g    0.968   0.016    0.899


SBP Average African-American


Call:
geeglm(formula = sbp_formula1, data = race_data, id = race_data$ID, 
    corstr = "ar1")

 Coefficients:
                     Estimate Std.err  Wald Pr(>|W|)    
(Intercept)           75.5456 13.2914 32.31  1.3e-08 ***
AGE0                   0.8208  0.2293 12.82  0.00034 ***
bmi                    0.5779  0.0796 52.67  3.9e-13 ***
cum_avg_unfair        -0.2653  0.3423  0.60  0.43844    
diabete               -3.1063  1.4381  4.67  0.03078 *  
edu_g                 -7.6413  4.4613  2.93  0.08675 .  
heartat_stroke        -0.5961  1.7580  0.11  0.73454    
med_bp                -5.6779  0.9912 32.82  1.0e-08 ***
med_other             -0.2263  0.7961  0.08  0.77622    
statusx                0.4205  0.2626  2.56  0.10930    
smoker                 3.2081  1.5012  4.57  0.03259 *  
visit                  0.7023  0.1290 29.65  5.2e-08 ***
cum_avg_unfair:edu_g   0.2944  0.2396  1.51  0.21923    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)      281    15.1

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.829  0.0119
Number of clusters:   507   Maximum cluster size: 12 

Call:
geeglm(formula = sbp_formula2, data = race_data, id = race_data$ID, 
    corstr = "ar1")

 Coefficients:
                 Estimate Std.err  Wald Pr(>|W|)    
(Intercept)       68.6415 11.2483 37.24  1.0e-09 ***
AGE0               0.8099  0.2251 12.94  0.00032 ***
bmi                0.5973  0.0803 55.33  1.0e-13 ***
chronicity         3.4167  5.1730  0.44  0.50894    
diabete           -3.0309  1.4416  4.42  0.03552 *  
edu_g              0.1724  2.3014  0.01  0.94028    
heartat_stroke    -0.5660  1.7559  0.10  0.74721    
med_bp            -5.6593  0.9936 32.44  1.2e-08 ***
med_other         -0.2258  0.7957  0.08  0.77655    
statusx            0.4112  0.2623  2.46  0.11696    
smoker             3.1430  1.4898  4.45  0.03488 *  
visit              0.6924  0.1288 28.89  7.7e-08 ***
chronicity:edu_g  -4.1950  3.3997  1.52  0.21724    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)      279    15.1

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.827   0.013
Number of clusters:   507   Maximum cluster size: 12 

DBP Average African-American


Call:
geeglm(formula = dbp_formula1, data = race_data, id = race_data$ID, 
    corstr = "ar1")

 Coefficients:
                     Estimate Std.err  Wald Pr(>|W|)    
(Intercept)           66.6998  7.7753 73.59  < 2e-16 ***
AGE0                   0.0825  0.1371  0.36    0.547    
bmi                    0.2810  0.0484 33.66  6.5e-09 ***
cum_avg_unfair        -0.0979  0.2171  0.20    0.652    
diabete               -2.2712  1.0419  4.75    0.029 *  
edu_g                 -3.6087  2.6849  1.81    0.179    
heartat_stroke        -0.5106  1.2527  0.17    0.684    
med_bp                -2.9916  0.5713 27.42  1.6e-07 ***
med_other             -0.0110  0.5512  0.00    0.984    
statusx                0.0920  0.1623  0.32    0.571    
smoker                 0.6389  0.8975  0.51    0.477    
visit                  0.3286  0.0772 18.11  2.1e-05 ***
cum_avg_unfair:edu_g   0.2007  0.1452  1.91    0.167    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)      106    4.47

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.805  0.0133
Number of clusters:   507   Maximum cluster size: 12 

Call:
geeglm(formula = dbp_formula2, data = race_data, id = race_data$ID, 
    corstr = "ar1")

 Coefficients:
                 Estimate Std.err  Wald Pr(>|W|)    
(Intercept)       61.5805  6.8660 80.44  < 2e-16 ***
AGE0               0.0937  0.1373  0.47     0.49    
bmi                0.2891  0.0496 33.95  5.7e-09 ***
chronicity         4.3344  3.1642  1.88     0.17    
diabete           -2.2634  1.0444  4.70     0.03 *  
edu_g              1.3276  1.3574  0.96     0.33    
heartat_stroke    -0.5096  1.2552  0.16     0.68    
med_bp            -3.0122  0.5727 27.67  1.4e-07 ***
med_other         -0.0256  0.5512  0.00     0.96    
statusx            0.0905  0.1624  0.31     0.58    
smoker             0.5567  0.8956  0.39     0.53    
visit              0.3233  0.0772 17.55  2.8e-05 ***
chronicity:edu_g  -1.9696  2.0716  0.90     0.34    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)      106    4.66

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.807  0.0141
Number of clusters:   507   Maximum cluster size: 12 

HTN African-American


Call:
geeglm(formula = htn_formula1, family = poisson(link = "log"), 
    data = race_data, id = race_data$ID, corstr = "ar1")

 Coefficients:
                     Estimate  Std.err   Wald Pr(>|W|)    
(Intercept)          -3.48196  0.91713  14.41  0.00015 ***
AGE0                  0.04010  0.01441   7.74  0.00540 ** 
bmi                   0.02079  0.00532  15.28  9.2e-05 ***
cum_avg_unfair       -0.03111  0.02988   1.08  0.29794    
diabete               0.05144  0.08295   0.38  0.53518    
edu_g                -0.62113  0.37471   2.75  0.09739 .  
heartat_stroke        0.05179  0.09884   0.27  0.60026    
med_other             0.04428  0.05093   0.76  0.38461    
statusx               0.02293  0.01960   1.37  0.24217    
smoker               -0.00888  0.06314   0.02  0.88813    
visit                 0.09004  0.00809 123.79  < 2e-16 ***
cum_avg_unfair:edu_g  0.02875  0.01912   2.26  0.13271    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)    0.614  0.0405

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.818  0.0179
Number of clusters:   507   Maximum cluster size: 12 

Risk Ratios:
                     Estimate    Wald Pr(>|W|)
AGE0                    1.041   7.742    0.005
bmi                     1.021  15.285    0.000
cum_avg_unfair          0.969   1.083    0.298
diabete                 1.053   0.385    0.535
edu_g                   0.537   2.748    0.097
heartat_stroke          1.053   0.275    0.600
med_other               1.045   0.756    0.385
statusx                 1.023   1.368    0.242
smoker                  0.991   0.020    0.888
visit                   1.094 123.794    0.000
cum_avg_unfair:edu_g    1.029   2.261    0.133

Call:
geeglm(formula = htn_formula2, family = poisson(link = "log"), 
    data = race_data, id = race_data$ID, corstr = "ar1")

 Coefficients:
                 Estimate  Std.err   Wald Pr(>|W|)    
(Intercept)      -3.97917  0.74255  28.72  8.4e-08 ***
AGE0              0.04009  0.01438   7.78   0.0053 ** 
bmi               0.02107  0.00538  15.31  9.1e-05 ***
chronicity       -0.17150  0.32556   0.28   0.5983    
diabete           0.05419  0.08348   0.42   0.5163    
edu_g            -0.12234  0.14942   0.67   0.4129    
heartat_stroke    0.05287  0.10062   0.28   0.5992    
med_other         0.04461  0.05145   0.75   0.3860    
statusx           0.02269  0.01964   1.33   0.2479    
smoker           -0.01435  0.06273   0.05   0.8191    
visit             0.08994  0.00809 123.51  < 2e-16 ***
chronicity:edu_g  0.07743  0.22067   0.12   0.7257    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)    0.613  0.0405

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.818   0.018
Number of clusters:   507   Maximum cluster size: 12 

Risk Ratios:
                 Estimate    Wald Pr(>|W|)
AGE0                1.041   7.776    0.005
bmi                 1.021  15.308    0.000
chronicity          0.842   0.278    0.598
diabete             1.056   0.421    0.516
edu_g               0.885   0.670    0.413
heartat_stroke      1.054   0.276    0.599
med_other           1.046   0.752    0.386
statusx             1.023   1.335    0.248
smoker              0.986   0.052    0.819
visit               1.094 123.506    0.000
chronicity:edu_g    1.081   0.123    0.726


SBP Average Chinese


Call:
geeglm(formula = sbp_formula1, data = race_data, id = race_data$ID, 
    corstr = "ar1")

 Coefficients:
                     Estimate Std.err  Wald Pr(>|W|)    
(Intercept)            24.868  17.061  2.12  0.14494    
AGE0                    1.252   0.297 17.73  2.5e-05 ***
bmi                     0.680   0.210 10.49  0.00120 ** 
cum_avg_unfair          0.767   0.531  2.08  0.14905    
diabete                -0.677   2.540  0.07  0.78979    
edu_g                  10.212   6.343  2.59  0.10739    
heartat_stroke         -2.146   2.370  0.82  0.36522    
med_bp                 -5.502   1.568 12.31  0.00045 ***
med_other               0.669   1.015  0.43  0.51005    
statusx                 0.155   0.306  0.26  0.61333    
smoker                  0.836   2.423  0.12  0.73019    
visit                   0.132   0.120  1.19  0.27454    
cum_avg_unfair:edu_g   -0.585   0.340  2.97  0.08486 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)      181    13.1

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.872  0.0128
Number of clusters:   211   Maximum cluster size: 12 

Call:
geeglm(formula = sbp_formula2, data = race_data, id = race_data$ID, 
    corstr = "ar1")

 Coefficients:
                 Estimate Std.err  Wald Pr(>|W|)    
(Intercept)        33.812  15.064  5.04  0.02479 *  
AGE0                1.297   0.302 18.40  1.8e-05 ***
bmi                 0.674   0.209 10.45  0.00122 ** 
chronicity          5.429   6.480  0.70  0.40218    
diabete            -0.712   2.529  0.08  0.77832    
edu_g               1.351   2.727  0.25  0.62045    
heartat_stroke     -2.186   2.374  0.85  0.35705    
med_bp             -5.514   1.559 12.50  0.00041 ***
med_other           0.673   1.017  0.44  0.50796    
statusx             0.153   0.307  0.25  0.61922    
smoker              0.806   2.438  0.11  0.74085    
visit               0.139   0.121  1.32  0.25028    
chronicity:edu_g   -3.336   4.079  0.67  0.41350    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)      181      13

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.871  0.0126
Number of clusters:   211   Maximum cluster size: 12 

DBP Average Chinese


Call:
geeglm(formula = dbp_formula1, data = race_data, id = race_data$ID, 
    corstr = "ar1")

 Coefficients:
                     Estimate Std.err  Wald Pr(>|W|)    
(Intercept)           39.5374 10.4624 14.28  0.00016 ***
AGE0                   0.4026  0.1909  4.45  0.03494 *  
bmi                    0.4654  0.1354 11.81  0.00059 ***
cum_avg_unfair         0.2259  0.3467  0.42  0.51475    
diabete               -0.6472  1.1764  0.30  0.58223    
edu_g                  5.3249  4.0629  1.72  0.19000    
heartat_stroke        -3.2199  2.0137  2.56  0.10981    
med_bp                -3.6273  1.1431 10.07  0.00151 ** 
med_other              1.2466  0.8767  2.02  0.15504    
statusx               -0.1091  0.2202  0.25  0.62041    
smoker                -0.2855  2.7167  0.01  0.91629    
visit                 -0.3910  0.0869 20.23  6.9e-06 ***
cum_avg_unfair:edu_g  -0.2465  0.2152  1.31  0.25190    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)       81    5.73

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.849  0.0142
Number of clusters:   211   Maximum cluster size: 12 

Call:
geeglm(formula = dbp_formula2, data = race_data, id = race_data$ID, 
    corstr = "ar1")

 Coefficients:
                 Estimate Std.err  Wald Pr(>|W|)    
(Intercept)       43.0503  9.3269 21.30  3.9e-06 ***
AGE0               0.4064  0.1938  4.40   0.0359 *  
bmi                0.4621  0.1347 11.77   0.0006 ***
chronicity         1.3122  4.6982  0.08   0.7800    
diabete           -0.6879  1.1703  0.35   0.5567    
edu_g              1.4427  1.9542  0.55   0.4603    
heartat_stroke    -3.2235  2.0184  2.55   0.1103    
med_bp            -3.6487  1.1444 10.17   0.0014 ** 
med_other          1.2452  0.8758  2.02   0.1551    
statusx           -0.1118  0.2203  0.26   0.6118    
smoker            -0.2737  2.7170  0.01   0.9198    
visit             -0.3859  0.0873 19.53  9.9e-06 ***
chronicity:edu_g  -1.4399  2.8058  0.26   0.6078    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)     81.4     5.8

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha     0.85  0.0144
Number of clusters:   211   Maximum cluster size: 12 

HTN Chinese


Call:
geeglm(formula = htn_formula1, family = poisson(link = "log"), 
    data = race_data, id = race_data$ID, corstr = "ar1")

 Coefficients:
                     Estimate  Std.err   Wald Pr(>|W|)    
(Intercept)          -3.48196  0.91713  14.41  0.00015 ***
AGE0                  0.04010  0.01441   7.74  0.00540 ** 
bmi                   0.02079  0.00532  15.28  9.2e-05 ***
cum_avg_unfair       -0.03111  0.02988   1.08  0.29794    
diabete               0.05144  0.08295   0.38  0.53518    
edu_g                -0.62113  0.37471   2.75  0.09739 .  
heartat_stroke        0.05179  0.09884   0.27  0.60026    
med_other             0.04428  0.05093   0.76  0.38461    
statusx               0.02293  0.01960   1.37  0.24217    
smoker               -0.00888  0.06314   0.02  0.88813    
visit                 0.09004  0.00809 123.79  < 2e-16 ***
cum_avg_unfair:edu_g  0.02875  0.01912   2.26  0.13271    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)    0.614  0.0405

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.818  0.0179
Number of clusters:   507   Maximum cluster size: 12 

Risk Ratios:
                     Estimate    Wald Pr(>|W|)
AGE0                    1.041   7.742    0.005
bmi                     1.021  15.285    0.000
cum_avg_unfair          0.969   1.083    0.298
diabete                 1.053   0.385    0.535
edu_g                   0.537   2.748    0.097
heartat_stroke          1.053   0.275    0.600
med_other               1.045   0.756    0.385
statusx                 1.023   1.368    0.242
smoker                  0.991   0.020    0.888
visit                   1.094 123.794    0.000
cum_avg_unfair:edu_g    1.029   2.261    0.133

Call:
geeglm(formula = htn_formula2, family = poisson(link = "log"), 
    data = race_data, id = race_data$ID, corstr = "ar1")

 Coefficients:
                 Estimate  Std.err   Wald Pr(>|W|)    
(Intercept)      -3.97917  0.74255  28.72  8.4e-08 ***
AGE0              0.04009  0.01438   7.78   0.0053 ** 
bmi               0.02107  0.00538  15.31  9.1e-05 ***
chronicity       -0.17150  0.32556   0.28   0.5983    
diabete           0.05419  0.08348   0.42   0.5163    
edu_g            -0.12234  0.14942   0.67   0.4129    
heartat_stroke    0.05287  0.10062   0.28   0.5992    
med_other         0.04461  0.05145   0.75   0.3860    
statusx           0.02269  0.01964   1.33   0.2479    
smoker           -0.01435  0.06273   0.05   0.8191    
visit             0.08994  0.00809 123.51  < 2e-16 ***
chronicity:edu_g  0.07743  0.22067   0.12   0.7257    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)    0.613  0.0405

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.818   0.018
Number of clusters:   507   Maximum cluster size: 12 

Risk Ratios:
                 Estimate    Wald Pr(>|W|)
AGE0                1.041   7.776    0.005
bmi                 1.021  15.308    0.000
chronicity          0.842   0.278    0.598
diabete             1.056   0.421    0.516
edu_g               0.885   0.670    0.413
heartat_stroke      1.054   0.276    0.599
med_other           1.046   0.752    0.386
statusx             1.023   1.335    0.248
smoker              0.986   0.052    0.819
visit               1.094 123.506    0.000
chronicity:edu_g    1.081   0.123    0.726


SBP Average Hispanic


Call:
geeglm(formula = sbp_formula1, data = race_data, id = race_data$ID, 
    corstr = "ar1")

 Coefficients:
                     Estimate Std.err  Wald Pr(>|W|)    
(Intercept)           78.7185 17.2267 20.88  4.9e-06 ***
AGE0                   0.5407  0.2459  4.83   0.0279 *  
bmi                    0.4393  0.1024 18.41  1.8e-05 ***
cum_avg_unfair         0.2215  0.7458  0.09   0.7665    
diabete                0.5820  2.7266  0.05   0.8310    
edu_g                  0.7764  8.8675  0.01   0.9302    
heartat_stroke        -7.7358  4.1191  3.53   0.0604 .  
med_bp                 4.9588  1.8627  7.09   0.0078 ** 
med_other             -1.2708  2.3172  0.30   0.5834    
statusx                0.2200  0.5045  0.19   0.6628    
smoker                 3.2119  1.5572  4.25   0.0392 *  
visit                  0.5233  0.2057  6.47   0.0109 *  
cum_avg_unfair:edu_g  -0.0618  0.6681  0.01   0.9263    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)      120    9.98

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.374  0.0518
Number of clusters:   124   Maximum cluster size: 8 

Call:
geeglm(formula = sbp_formula2, data = race_data, id = race_data$ID, 
    corstr = "ar1")

 Coefficients:
                 Estimate Std.err  Wald Pr(>|W|)    
(Intercept)        81.781  13.197 38.40  5.8e-10 ***
AGE0                0.532   0.244  4.76   0.0291 *  
bmi                 0.439   0.104 17.75  2.5e-05 ***
chronicity          0.852   7.087  0.01   0.9044    
diabete             0.551   2.725  0.04   0.8397    
edu_g              -0.226   2.932  0.01   0.9386    
heartat_stroke     -7.858   4.079  3.71   0.0540 .  
med_bp              4.937   1.870  6.97   0.0083 ** 
med_other          -1.209   2.359  0.26   0.6084    
statusx             0.239   0.502  0.23   0.6347    
smoker              3.155   1.538  4.21   0.0402 *  
visit               0.523   0.204  6.56   0.0104 *  
chronicity:edu_g    0.365   5.972  0.00   0.9513    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)      120      10

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.378  0.0519
Number of clusters:   124   Maximum cluster size: 8 

DBP Average Hispanic


Call:
geeglm(formula = dbp_formula1, data = race_data, id = race_data$ID, 
    corstr = "ar1")

 Coefficients:
                     Estimate Std.err  Wald Pr(>|W|)    
(Intercept)           59.6098 10.8995 29.91  4.5e-08 ***
AGE0                   0.2605  0.1512  2.97   0.0849 .  
bmi                    0.2273  0.0671 11.48   0.0007 ***
cum_avg_unfair         0.1624  0.5546  0.09   0.7697    
diabete                2.0742  1.8085  1.32   0.2514    
edu_g                 -0.5628  6.2807  0.01   0.9286    
heartat_stroke        -3.9391  3.8211  1.06   0.3026    
med_bp                 3.6648  1.2059  9.24   0.0024 ** 
med_other             -0.0352  1.3487  0.00   0.9792    
statusx               -0.6069  0.3745  2.63   0.1051    
smoker                 2.0108  0.9366  4.61   0.0318 *  
visit                 -0.4296  0.1455  8.72   0.0032 ** 
cum_avg_unfair:edu_g   0.0159  0.5101  0.00   0.9752    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)     59.9     4.5

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.231  0.0535
Number of clusters:   124   Maximum cluster size: 8 

Call:
geeglm(formula = dbp_formula2, data = race_data, id = race_data$ID, 
    corstr = "ar1")

 Coefficients:
                 Estimate Std.err  Wald Pr(>|W|)    
(Intercept)       59.7021  8.0468 55.05  1.2e-13 ***
AGE0               0.2607  0.1494  3.05   0.0809 .  
bmi                0.2207  0.0686 10.36   0.0013 ** 
chronicity         7.0445  4.2760  2.71   0.0995 .  
diabete            2.0408  1.7963  1.29   0.2559    
edu_g              1.3402  1.5849  0.72   0.3978    
heartat_stroke    -4.1305  3.7713  1.20   0.2734    
med_bp             3.6146  1.2015  9.05   0.0026 ** 
med_other          0.1586  1.3446  0.01   0.9061    
statusx           -0.5877  0.3748  2.46   0.1169    
smoker             2.0445  0.9520  4.61   0.0317 *  
visit             -0.4255  0.1443  8.70   0.0032 ** 
chronicity:edu_g  -5.5672  3.1578  3.11   0.0779 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)     60.1    4.52

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.235  0.0555
Number of clusters:   124   Maximum cluster size: 8 

HTN Hispanic


Call:
geeglm(formula = htn_formula1, family = poisson(link = "log"), 
    data = race_data, id = race_data$ID, corstr = "ar1")

 Coefficients:
                     Estimate Std.err  Wald Pr(>|W|)    
(Intercept)           -6.2386  2.3706  6.93  0.00850 ** 
AGE0                   0.1186  0.0286 17.17  3.4e-05 ***
bmi                    0.0409  0.0123 11.04  0.00089 ***
cum_avg_unfair        -0.1511  0.0831  3.30  0.06920 .  
diabete                0.0503  0.1885  0.07  0.78969    
edu_g                 -3.3542  1.4941  5.04  0.02477 *  
heartat_stroke        -0.3189  0.4992  0.41  0.52303    
med_other              0.2705  0.1783  2.30  0.12911    
statusx                0.0486  0.0528  0.85  0.35698    
smoker                 0.2271  0.1864  1.48  0.22321    
visit                  0.1112  0.0178 39.12  4.0e-10 ***
cum_avg_unfair:edu_g   0.2082  0.0716  8.47  0.00362 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)     0.69   0.157

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha     0.61   0.106
Number of clusters:   124   Maximum cluster size: 8 

Risk Ratios:
                     Estimate   Wald Pr(>|W|)
AGE0                    1.126 17.167    0.000
bmi                     1.042 11.043    0.001
cum_avg_unfair          0.860  3.302    0.069
diabete                 1.052  0.071    0.790
edu_g                   0.035  5.040    0.025
heartat_stroke          0.727  0.408    0.523
med_other               1.311  2.303    0.129
statusx                 1.050  0.848    0.357
smoker                  1.255  1.484    0.223
visit                   1.118 39.115    0.000
cum_avg_unfair:edu_g    1.232  8.466    0.004

Call:
geeglm(formula = htn_formula2, family = poisson(link = "log"), 
    data = race_data, id = race_data$ID, corstr = "ar1")

 Coefficients:
                 Estimate Std.err  Wald Pr(>|W|)    
(Intercept)       -9.0537  1.7733 26.07  3.3e-07 ***
AGE0               0.1208  0.0287 17.74  2.5e-05 ***
bmi                0.0421  0.0122 11.85  0.00058 ***
chronicity         2.2441  1.5953  1.98  0.15952    
diabete            0.0277  0.1912  0.02  0.88472    
edu_g             -0.0994  0.5430  0.03  0.85478    
heartat_stroke    -0.3437  0.4844  0.50  0.47800    
med_other          0.3262  0.1788  3.33  0.06805 .  
statusx            0.0460  0.0509  0.82  0.36528    
smoker             0.2201  0.1794  1.51  0.21987    
visit              0.1095  0.0174 39.47  3.3e-10 ***
chronicity:edu_g  -1.5567  1.4875  1.10  0.29534    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)    0.706   0.173

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.583   0.114
Number of clusters:   124   Maximum cluster size: 8 

Risk Ratios:
                 Estimate   Wald Pr(>|W|)
AGE0                1.128 17.741    0.000
bmi                 1.043 11.847    0.001
chronicity          9.432  1.979    0.160
diabete             1.028  0.021    0.885
edu_g               0.905  0.033    0.855
heartat_stroke      0.709  0.503    0.478
med_other           1.386  3.330    0.068
statusx             1.047  0.820    0.365
smoker              1.246  1.505    0.220
visit               1.116 39.474    0.000
chronicity:edu_g    0.211  1.095    0.295


SBP Average Japanese


Call:
geeglm(formula = sbp_formula1, data = race_data, id = race_data$ID, 
    corstr = "ar1")

 Coefficients:
                     Estimate Std.err  Wald Pr(>|W|)    
(Intercept)            36.837  15.284  5.81    0.016 *  
AGE0                    1.204   0.281 18.29  1.9e-05 ***
bmi                     0.449   0.200  5.04    0.025 *  
cum_avg_unfair          0.616   0.495  1.55    0.213    
diabete                -1.316   1.645  0.64    0.424    
edu_g                   3.625   5.210  0.48    0.487    
heartat_stroke         10.205   5.901  2.99    0.084 .  
med_bp                 -8.431   2.144 15.47  8.4e-05 ***
med_other               0.975   1.057  0.85    0.357    
statusx                 0.282   0.308  0.84    0.360    
smoker                 -0.518   1.838  0.08    0.778    
visit                   0.948   0.136 48.53  3.2e-12 ***
cum_avg_unfair:edu_g   -0.356   0.306  1.35    0.245    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)      213    21.5

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.881  0.0097
Number of clusters:   228   Maximum cluster size: 12 

Call:
geeglm(formula = sbp_formula2, data = race_data, id = race_data$ID, 
    corstr = "ar1")

 Coefficients:
                 Estimate Std.err  Wald Pr(>|W|)    
(Intercept)        46.188  14.090 10.75    0.001 ** 
AGE0                1.239   0.283 19.14  1.2e-05 ***
bmi                 0.438   0.198  4.90    0.027 *  
chronicity         -2.361   8.458  0.08    0.780    
diabete            -1.389   1.641  0.72    0.397    
edu_g              -3.587   2.185  2.69    0.101    
heartat_stroke     10.163   5.919  2.95    0.086 .  
med_bp             -8.373   2.144 15.25  9.4e-05 ***
med_other           0.965   1.058  0.83    0.362    
statusx             0.282   0.308  0.84    0.359    
smoker             -0.514   1.810  0.08    0.776    
visit               0.942   0.136 47.90  4.5e-12 ***
chronicity:edu_g    4.261   5.021  0.72    0.396    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)      210      21

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.878  0.0101
Number of clusters:   228   Maximum cluster size: 12 

DBP Average Japanese


Call:
geeglm(formula = dbp_formula1, data = race_data, id = race_data$ID, 
    corstr = "ar1")

 Coefficients:
                     Estimate Std.err  Wald Pr(>|W|)    
(Intercept)           39.0708 11.0662 12.47  0.00041 ***
AGE0                   0.5392  0.1986  7.37  0.00662 ** 
bmi                    0.2852  0.1380  4.27  0.03875 *  
cum_avg_unfair         0.3285  0.3298  0.99  0.31928    
diabete               -0.1721  1.0512  0.03  0.86994    
edu_g                  0.7223  3.7316  0.04  0.84652    
heartat_stroke         5.7974  2.5095  5.34  0.02088 *  
med_bp                -5.5707  1.3690 16.56  4.7e-05 ***
med_other             -0.2363  0.7690  0.09  0.75860    
statusx                0.1818  0.2202  0.68  0.40889    
smoker                -0.0837  1.3735  0.00  0.95141    
visit                  0.0346  0.0917  0.14  0.70634    
cum_avg_unfair:edu_g  -0.1170  0.2243  0.27  0.60192    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)     94.4    7.61

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.871  0.0111
Number of clusters:   228   Maximum cluster size: 12 

Call:
geeglm(formula = dbp_formula2, data = race_data, id = race_data$ID, 
    corstr = "ar1")

 Coefficients:
                 Estimate Std.err  Wald Pr(>|W|)    
(Intercept)       44.8120 10.1006 19.68  9.1e-06 ***
AGE0               0.5467  0.1983  7.60   0.0058 ** 
bmi                0.2881  0.1366  4.45   0.0350 *  
chronicity        -3.3047  4.9844  0.44   0.5073    
diabete           -0.1674  1.0367  0.03   0.8717    
edu_g             -2.2745  1.3967  2.65   0.1034    
heartat_stroke     5.8461  2.5171  5.39   0.0202 *  
med_bp            -5.5211  1.3659 16.34  5.3e-05 ***
med_other         -0.2217  0.7689  0.08   0.7731    
statusx            0.1798  0.2202  0.67   0.4143    
smoker            -0.0629  1.3437  0.00   0.9627    
visit              0.0280  0.0916  0.09   0.7596    
chronicity:edu_g   3.6066  3.1601  1.30   0.2538    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)     93.1    7.42

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.867  0.0114
Number of clusters:   228   Maximum cluster size: 12 

HTN Japanese


Call:
geeglm(formula = htn_formula1, family = poisson(link = "log"), 
    data = race_data, id = race_data$ID, corstr = "ar1")

 Coefficients:
                     Estimate Std.err  Wald Pr(>|W|)    
(Intercept)           -8.0145  2.3608 11.53  0.00069 ***
AGE0                   0.0835  0.0395  4.46  0.03472 *  
bmi                    0.0209  0.0280  0.56  0.45560    
cum_avg_unfair         0.0722  0.0894  0.65  0.41952    
diabete                0.0335  0.1683  0.04  0.84206    
edu_g                  0.2375  1.0067  0.06  0.81347    
heartat_stroke        -0.2393  0.0854  7.85  0.00509 ** 
med_other             -0.0220  0.1911  0.01  0.90831    
statusx                0.0672  0.0511  1.73  0.18848    
smoker                -0.3230  0.2981  1.17  0.27864    
visit                  0.1310  0.0213 37.89  7.5e-10 ***
cum_avg_unfair:edu_g  -0.0328  0.0613  0.29  0.59246    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)    0.841   0.287

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.857  0.0756
Number of clusters:   228   Maximum cluster size: 12 

Risk Ratios:
                     Estimate   Wald Pr(>|W|)
AGE0                    1.087  4.459    0.035
bmi                     1.021  0.557    0.456
cum_avg_unfair          1.075  0.652    0.420
diabete                 1.034  0.040    0.842
edu_g                   1.268  0.056    0.813
heartat_stroke          0.787  7.849    0.005
med_other               0.978  0.013    0.908
statusx                 1.070  1.729    0.188
smoker                  0.724  1.174    0.279
visit                   1.140 37.890    0.000
cum_avg_unfair:edu_g    0.968  0.287    0.592

Call:
geeglm(formula = htn_formula2, family = poisson(link = "log"), 
    data = race_data, id = race_data$ID, corstr = "ar1")

 Coefficients:
                 Estimate Std.err  Wald Pr(>|W|)    
(Intercept)       -7.2837  2.0907 12.14  0.00049 ***
AGE0               0.0877  0.0399  4.83  0.02791 *  
bmi                0.0226  0.0278  0.66  0.41668    
chronicity         0.4743  0.8774  0.29  0.58876    
diabete            0.0355  0.1735  0.04  0.83775    
edu_g             -0.2213  0.3175  0.49  0.48588    
heartat_stroke    -0.2280  0.0886  6.63  0.01003 *  
med_other         -0.0197  0.1944  0.01  0.91940    
statusx            0.0671  0.0515  1.70  0.19231    
smoker            -0.3249  0.3077  1.11  0.29110    
visit              0.1305  0.0212 37.95  7.3e-10 ***
chronicity:edu_g  -0.1617  0.6079  0.07  0.79027    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)    0.836   0.275

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.857  0.0722
Number of clusters:   228   Maximum cluster size: 12 

Risk Ratios:
                 Estimate   Wald Pr(>|W|)
AGE0                1.092  4.833    0.028
bmi                 1.023  0.660    0.417
chronicity          1.607  0.292    0.589
diabete             1.036  0.042    0.838
edu_g               0.801  0.486    0.486
heartat_stroke      0.796  6.630    0.010
med_other           0.981  0.010    0.919
statusx             1.069  1.700    0.192
smoker              0.723  1.115    0.291
visit               1.139 37.948    0.000
chronicity:edu_g    0.851  0.071    0.790