# From the course Making Sense of Data
# Video at: C:\Users\GATEWAY\Videos\Making_sense_of_data
setwd("C:\\Users\\GATEWAY\\Documents")
LifeExpRegion <- read.table("~/making_sense_ofData/LifeExpRegion.txt", quote="\"", comment.char="")
head(LifeExpRegion)
## V1 V2 V3
## 1 Afghanistan 48.673 SAs
## 2 Albania 76.918 EuCA
## 3 Algeria 73.131 MENA
## 4 Angola 51.093 SSA
## 5 Argentina 75.901 Amer
## 6 Armenia 74.241 EuCA
library(magrittr)
lifexp <- set_colnames(LifeExpRegion,c("country","years","region"))
head(lifexp)
## country years region
## 1 Afghanistan 48.673 SAs
## 2 Albania 76.918 EuCA
## 3 Algeria 73.131 MENA
## 4 Angola 51.093 SSA
## 5 Argentina 75.901 Amer
## 6 Armenia 74.241 EuCA
str(lifexp)
## 'data.frame': 197 obs. of 3 variables:
## $ country: Factor w/ 197 levels "Afghanistan",..: 1 2 3 4 5 6 7 8 9 10 ...
## $ years : num 48.7 76.9 73.1 51.1 75.9 ...
## $ region : Factor w/ 6 levels "Amer","EAP","EuCA",..: 5 3 4 6 1 3 1 2 3 3 ...
table(lifexp$region)
##
## Amer EAP EuCA MENA SAs SSA
## 39 30 50 21 8 49
counts <- table(lifexp$region)
relfreq <- counts/sum(counts)
region_names <- c("Americas","E.Asia&Pc","Eur&C.As","M.E&Afr",
"S.Asia","S-S.Africa")
barplot(counts,col = rainbow(6),names.arg = region_names,main = "World Regions: Bar
Chart(counts")

barplot(relfreq,col = rainbow(6),names.arg=region_names,main="World Regions:Bar
Chart(relative frequencies")

pie(counts,col = rainbow(6),labels = region_names,main = "World Regions: Pie Chart")

SkeletonData <- read.csv("~/making_sense_ofData/SkeletonData.txt", sep="")
summary(SkeletonData$BMI)
## normal obese overweight underweight
## 225 20 81 74
with(SkeletonData,{
sex_counts = table(Sex)
sex_relfreq = sex_counts/sum(sex_counts)
sex_names=c("Male","Female")
barplot(sex_counts,col = rainbow(2),names.arg = sex_names,main = "Skeleton Sex Bar
Relative Frequencies")
barplot(sex_relfreq,col = rainbow(2),names.arg = sex_names,main = "Skeleton Sex Bar Chart")
pie(sex_counts,col = rainbow(2),labels = sex_names,main = "Skeleton Sex Pie Chart")
})



with(SkeletonData,{
bmi_counts = table(BMI)
bmi_relfreq = bmi_counts/sum(bmi_counts)
bmi_names = c("underweigth","normal","obese","overweight")
barplot(bmi_counts,col = rainbow(4),names.arg = bmi_names,main = "BMI Bar Chart")
barplot(bmi_relfreq,col = rainbow(4),names.arg = bmi_names,main = "BMI Bar Chart Relative Freq.")
pie(bmi_counts,col = rainbow(4),labels = bmi_names,main = "BMI Pie Chart")
})


