Repeated Measures for Sense of Identity

# Loading the dataset that has been reset into a long version
load("/Users/levibrackman/data.test.RData")
# Load the psych package
library(psych)

items <- grep("APSI[0-8]", names(data), value = TRUE)
scaleKey <- c(1, 1, 1, 1, 1, -1, 1, 1)
data.test$meanAPSI <- scoreItems(scaleKey, items = data.test[, items], delete = FAAPSIE)$score
## Error: only defined on a data frame with all numeric variables

# Creating a new variable that is the mean of all positive purpose Sense of
# Identity questions
data.test$APSI <- apply(data.test[, c("APSI1", "APSI2", "APSI3", "APSI4", "APSI5", 
    "APSI6", "APSI7", "APSI8")], 1, mean, na.rm = TRUE)

For lme to work GROUP and ID need to be seen as factors

data.test$GROUP <- as.factor(data.test$GROUP)
data.test$ID <- as.factor(data.test$ID)

Describe the APSI variable by the GROUP variable

describeBy(data.test$APSI, group = data.test$GROUP)
## group: 0
##   vars  n mean   sd median trimmed  mad min max range  skew kurtosis   se
## 1    1 80 3.83 0.45   3.88    3.85 0.37 2.5   5   2.5 -0.46     0.52 0.05
## -------------------------------------------------------- 
## group: 1
##   vars  n mean   sd median trimmed  mad  min max range  skew kurtosis   se
## 1    1 70 3.83 0.54   3.94    3.89 0.46 1.62 4.5  2.88 -1.39     2.71 0.06
## -------------------------------------------------------- 
## group: 2
##   vars n mean   sd median trimmed  mad  min  max range skew kurtosis   se
## 1    1 5 3.77 0.41   3.62    3.77 0.37 3.38 4.38     1 0.41    -1.83 0.18

Create a plot that visualizes APSI variable by the GROUP variable

library(ggplot2)
## 
## Attaching package: 'ggplot2'
## 
## The following object is masked from 'package:psych':
## 
##     %+%
qplot(GROUP, APSI, data = data.test, geom = "boxplot")

plot of chunk unnamed-chunk-4


# Load the nlme package
library(nlme)

Two way repeated measures


with(data.test, boxplot(APSI ~ wave + GROUP))

plot of chunk unnamed-chunk-5

Graphing the Two-Way Interaction.

# Load the nlme package
library(nlme)

I am not sure if I am doing this right

baseline <- lme(APSI ~ 1, random = ~1 | ID/GROUP/wave, data = data.test, method = "ML")
## Error: nlminb problem, convergence error code = 1
##   message = singular convergence (7)

APSIModel <- lme(APSI ~ GROUP, random = ~1 | ID/GROUP/wave, data = data.test, 
    method = "ML")

APSI2Model <- lme(APSI ~ GROUP + wave, random = ~1 | ID/GROUP/wave, data = data.test, 
    method = "ML")

fullModel <- lme(APSI ~ GROUP * wave, random = ~1 | ID/GROUP/wave, data = data.test, 
    method = "ML")

We again the significance of our modeAPSI by comparing them from the baseline model using the anova() function.


anova(APSIModel, APSI2Model, fullModel)
##            Model df   AIC   BIC logLik   Test L.Ratio p-value
## APSIModel      1  7 205.9 227.2 -95.94                       
## APSI2Model     2  8 197.0 221.4 -90.52 1 vs 2   10.84   1e-03
## fullModel      3 10 185.8 216.3 -82.91 2 vs 3   15.22   5e-04
# Baseline would ot work for some reason. So it was removed.
summary(fullModel)
## Warning: NaNs produced
## Linear mixed-effects model fit by maximum likelihood
##  Data: data.test 
##     AIC   BIC logLik
##   185.8 216.3 -82.91
## 
## Random effects:
##  Formula: ~1 | ID
##         (Intercept)
## StdDev:      0.4072
## 
##  Formula: ~1 | GROUP %in% ID
##         (Intercept)
## StdDev:    0.000178
## 
##  Formula: ~1 | wave %in% GROUP %in% ID
##         (Intercept) Residual
## StdDev:   7.605e-08   0.2552
## 
## Fixed effects: APSI ~ GROUP * wave 
##              Value Std.Error DF t-value p-value
## (Intercept)  3.817    0.1099 89   34.75  0.0000
## GROUP1      -0.513    0.1603  0   -3.20     NaN
## GROUP2      -0.407    0.4493 89   -0.90  0.3680
## wave        -0.003    0.0616 59   -0.06  0.9562
## GROUP1:wave  0.377    0.0924 59    4.08  0.0001
## GROUP2:wave  0.259    0.2614 59    0.99  0.3254
##  Correlation: 
##             (Intr) GROUP1 GROUP2 wave   GROUP1:
## GROUP1      -0.684                             
## GROUP2      -0.245  0.167                      
## wave        -0.789  0.541  0.193               
## GROUP1:wave  0.535 -0.808 -0.131 -0.661        
## GROUP2:wave  0.186 -0.128 -0.787 -0.236  0.156 
## 
## Standardized Within-Group Residuals:
##      Min       Q1      Med       Q3      Max 
## -2.31725 -0.42893  0.03373  0.46972  1.60768 
## 
## Number of Observations: 155
## Number of Groups: 
##                      ID           GROUP %in% ID wave %in% GROUP %in% ID 
##                      91                      92                     154