Repeated Measures for MLQ

# Loading the dataset that has been reset into a long version
load("/Users/levibrackman/data.test.RData")
# Creating a new variable that is the mean of all positive purpose MLQ
# questions
data.test$MLQP <- apply(data.test[, c("MLQ1", "MLQ4", "MLQ5", "MLQ6")], 1, mean, 
    na.rm = TRUE)

For lme to work GROUP and ID need to be seen as factors

data.test$GROUP <- as.factor(data.test$GROUP)
data.test$ID <- as.factor(data.test$ID)
# Load the psych package
library(psych)

Describe the MLQ variable by the GROUP variable

describeBy(data.test$MLQP, group = data.test$GROUP)
## group: 0
##   vars  n mean   sd median trimmed  mad min max range  skew kurtosis   se
## 1    1 80 4.77 1.19   4.75     4.8 1.11 1.5   7   5.5 -0.25    -0.21 0.13
## -------------------------------------------------------- 
## group: 1
##   vars  n mean   sd median trimmed  mad min max range  skew kurtosis   se
## 1    1 70    5 1.47      5     5.1 1.48   2   7     5 -0.33    -0.91 0.18
## -------------------------------------------------------- 
## group: 2
##   vars n mean   sd median trimmed  mad  min  max range skew kurtosis   se
## 1    1 5 4.55 1.45   3.75    4.55 0.74 3.25 6.25     3 0.27    -2.22 0.65

Create a plot that visualizes MLQ variable by the GROUP variable

library(ggplot2)
## 
## Attaching package: 'ggplot2'
## 
## The following object is masked from 'package:psych':
## 
##     %+%
qplot(GROUP, MLQP, data = data.test, geom = "boxplot")

plot of chunk unnamed-chunk-4


# Load the nlme package
library(nlme)

Two way repeated measures



p <- ggplot(data.test, aes(GROUP, MLQP))
p + geom_boxplot(aes(fill = wave))
## Error: 'x' and 'units' must have length > 0

Graphing the Two-Way Interaction, although it seems not to do what it is supposed to do (not sure why)!

# Load the nlme package
library(nlme)

I am not sure if I am doing this right

baseline <- lme(MLQP ~ 1, random = ~1 | ID/GROUP/wave, data = data.test, method = "ML")

MLQPModel <- lme(MLQP ~ GROUP, random = ~1 | ID/GROUP/wave, data = data.test, 
    method = "ML")

MLQP2Model <- lme(MLQP ~ GROUP + wave, random = ~1 | ID/GROUP/wave, data = data.test, 
    method = "ML")

fullModel <- lme(MLQP ~ GROUP * wave, random = ~1 | ID/GROUP/wave, data = data.test, 
    method = "ML")

We again the significance of our models by comparing them from the baseline model using the anova() function.


anova(baseline, MLQPModel, MLQP2Model, fullModel)
##            Model df   AIC   BIC logLik   Test L.Ratio p-value
## baseline       1  5 503.7 518.9 -246.8                       
## MLQPModel      2  7 506.8 528.1 -246.4 1 vs 2    0.91  0.6345
## MLQP2Model     3  8 490.0 514.3 -237.0 2 vs 3   18.77  <.0001
## fullModel      4 10 473.4 503.9 -226.7 3 vs 4   20.54  <.0001
summary(fullModel)
## Warning: NaNs produced
## Linear mixed-effects model fit by maximum likelihood
##  Data: data.test 
##     AIC   BIC logLik
##   473.4 503.9 -226.7
## 
## Random effects:
##  Formula: ~1 | ID
##         (Intercept)
## StdDev:       1.115
## 
##  Formula: ~1 | GROUP %in% ID
##         (Intercept)
## StdDev:   0.0001745
## 
##  Formula: ~1 | wave %in% GROUP %in% ID
##         (Intercept) Residual
## StdDev:      0.4869    0.354
## 
## Fixed effects: MLQP ~ GROUP * wave 
##              Value Std.Error DF t-value p-value
## (Intercept)  4.563    0.2726 89  16.741  0.0000
## GROUP1      -1.182    0.3965  0  -2.981     NaN
## GROUP2      -0.449    1.1160 89  -0.402  0.6886
## wave         0.090    0.1466 59   0.611  0.5436
## GROUP1:wave  1.044    0.2200 59   4.747  0.0000
## GROUP2:wave  0.129    0.6199 59   0.209  0.8353
##  Correlation: 
##             (Intr) GROUP1 GROUP2 wave   GROUP1:
## GROUP1      -0.683                             
## GROUP2      -0.244  0.167                      
## wave        -0.751  0.517  0.183               
## GROUP1:wave  0.514 -0.776 -0.126 -0.663        
## GROUP2:wave  0.178 -0.122 -0.749 -0.236  0.157 
## 
## Standardized Within-Group Residuals:
##       Min        Q1       Med        Q3       Max 
## -1.396636 -0.255215 -0.003275  0.276056  1.158872 
## 
## Number of Observations: 155
## Number of Groups: 
##                      ID           GROUP %in% ID wave %in% GROUP %in% ID 
##                      91                      92                     154