SWAN


SBP Average


Call:
geeglm(formula = sbp_formula1, data = gee_data, id = gee_data$ID, 
    corstr = "ar1")

 Coefficients:
                           Estimate Std.err   Wald Pr(>|W|)    
(Intercept)                 62.4772  4.4140 200.35  < 2e-16 ***
AGE0                         0.7708  0.0863  79.72  < 2e-16 ***
bmi                          0.6389  0.0397 259.32  < 2e-16 ***
cum_avg_unfair              -0.0265  0.0737   0.13    0.719    
diabete                     -1.6491  0.8328   3.92    0.048 *  
edu_g                       -2.0721  0.5048  16.85  4.0e-05 ***
ETHNICBLACK                  3.7318  2.5400   2.16    0.142    
ETHNICCHINE                  3.7244  3.4264   1.18    0.277    
ETHNICHISPA                 -2.0982  3.2284   0.42    0.516    
ETHNICJAPAN                  2.6265  2.8673   0.84    0.360    
heartat_stroke              -1.3349  0.9818   1.85    0.174    
med_bp                      -4.9256  0.5372  84.07  < 2e-16 ***
med_other                   -0.0790  0.3242   0.06    0.807    
SITE12                       0.4558  0.9427   0.23    0.629    
SITE13                       5.8809  1.0792  29.69  5.1e-08 ***
SITE14                      -2.1711  1.1063   3.85    0.050 *  
SITE15                      -2.0247  1.0959   3.41    0.065 .  
SITE16                       7.8588  1.2079  42.33  7.7e-11 ***
SITE17                      -1.4335  0.9762   2.16    0.142    
statusx                      0.1313  0.0990   1.76    0.185    
smoker                       1.3704  0.6228   4.84    0.028 *  
visit                        0.6194  0.0492 158.25  < 2e-16 ***
cum_avg_unfair:ETHNICBLACK   0.2072  0.1374   2.27    0.132    
cum_avg_unfair:ETHNICCHINE  -0.0466  0.1806   0.07    0.797    
cum_avg_unfair:ETHNICHISPA   0.2762  0.2399   1.33    0.249    
cum_avg_unfair:ETHNICJAPAN   0.1005  0.1639   0.38    0.540    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)      189    6.11

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.851 0.00714
Number of clusters:   2200   Maximum cluster size: 12 

Call:
geeglm(formula = sbp_formula2, data = gee_data, id = gee_data$ID, 
    corstr = "ar1")

 Coefficients:
                       Estimate Std.err   Wald Pr(>|W|)    
(Intercept)             62.3198  4.3387 206.31  < 2e-16 ***
AGE0                     0.7680  0.0860  79.70  < 2e-16 ***
bmi                      0.6418  0.0398 260.56  < 2e-16 ***
chronicity              -0.4152  0.8175   0.26    0.612    
diabete                 -1.6398  0.8328   3.88    0.049 *  
edu_g                   -2.1373  0.5042  17.97  2.2e-05 ***
ETHNICBLACK              8.7120  1.2630  47.58  5.3e-12 ***
ETHNICCHINE              2.8422  1.6081   3.12    0.077 .  
ETHNICHISPA              0.8051  1.3860   0.34    0.561    
ETHNICJAPAN              2.9082  1.3256   4.81    0.028 *  
heartat_stroke          -1.3188  0.9824   1.80    0.179    
med_bp                  -4.9298  0.5380  83.96  < 2e-16 ***
med_other               -0.0755  0.3242   0.05    0.816    
SITE12                   0.6502  0.9396   0.48    0.489    
SITE13                   5.8067  1.0697  29.46  5.7e-08 ***
SITE14                  -2.0966  1.1053   3.60    0.058 .  
SITE15                  -1.9740  1.0926   3.26    0.071 .  
SITE16                   7.9176  1.2004  43.50  4.2e-11 ***
SITE17                  -1.4046  0.9713   2.09    0.148    
statusx                  0.1292  0.0989   1.71    0.191    
smoker                   1.3818  0.6214   4.95    0.026 *  
visit                    0.6171  0.0490 158.37  < 2e-16 ***
chronicity:ETHNICBLACK  -1.8379  1.8425   0.99    0.319    
chronicity:ETHNICCHINE   0.0504  2.2096   0.00    0.982    
chronicity:ETHNICHISPA   2.2686  2.6580   0.73    0.393    
chronicity:ETHNICJAPAN   4.0003  2.5434   2.47    0.116    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)      189    6.07

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha     0.85 0.00719
Number of clusters:   2200   Maximum cluster size: 12 

DBP Average


Call:
geeglm(formula = dbp_formula1, data = gee_data, id = gee_data$ID, 
    corstr = "ar1")

 Coefficients:
                           Estimate  Std.err   Wald Pr(>|W|)    
(Intercept)                52.00597  2.78242 349.35  < 2e-16 ***
AGE0                        0.19690  0.05356  13.52  0.00024 ***
bmi                         0.35708  0.02495 204.87  < 2e-16 ***
cum_avg_unfair             -0.00896  0.04746   0.04  0.85026    
diabete                    -1.26382  0.52742   5.74  0.01656 *  
edu_g                      -0.81378  0.31040   6.87  0.00875 ** 
ETHNICBLACK                -0.05743  1.57887   0.00  0.97098    
ETHNICCHINE                 4.07241  2.28114   3.19  0.07422 .  
ETHNICHISPA                -1.86064  2.40670   0.60  0.43946    
ETHNICJAPAN                 1.35187  1.93546   0.49  0.48488    
heartat_stroke             -0.30709  0.66505   0.21  0.64426    
med_bp                     -2.96066  0.34160  75.12  < 2e-16 ***
med_other                   0.01465  0.22876   0.00  0.94894    
SITE12                      7.42388  0.54522 185.40  < 2e-16 ***
SITE13                      7.81289  0.62579 155.87  < 2e-16 ***
SITE14                      1.66965  0.65848   6.43  0.01123 *  
SITE15                      3.84080  0.65923  33.94  5.7e-09 ***
SITE16                      8.79983  0.79938 121.18  < 2e-16 ***
SITE17                      2.86009  0.55480  26.58  2.5e-07 ***
statusx                    -0.00587  0.06959   0.01  0.93281    
smoker                      0.11891  0.40902   0.08  0.77127    
visit                       0.08141  0.03251   6.27  0.01228 *  
cum_avg_unfair:ETHNICBLACK  0.16974  0.08555   3.94  0.04724 *  
cum_avg_unfair:ETHNICCHINE -0.09329  0.11959   0.61  0.43537    
cum_avg_unfair:ETHNICHISPA  0.26817  0.18452   2.11  0.14613    
cum_avg_unfair:ETHNICJAPAN  0.12774  0.11418   1.25  0.26325    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)     80.5    2.12

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha     0.82 0.00801
Number of clusters:   2200   Maximum cluster size: 12 

Call:
geeglm(formula = dbp_formula2, data = gee_data, id = gee_data$ID, 
    corstr = "ar1")

 Coefficients:
                       Estimate  Std.err   Wald Pr(>|W|)    
(Intercept)            51.96115  2.72824 362.74  < 2e-16 ***
AGE0                    0.19626  0.05364  13.39  0.00025 ***
bmi                     0.35810  0.02502 204.92  < 2e-16 ***
chronicity             -0.15165  0.51384   0.09  0.76790    
diabete                -1.26366  0.52672   5.76  0.01643 *  
edu_g                  -0.82999  0.31118   7.11  0.00765 ** 
ETHNICBLACK             2.49188  0.73898  11.37  0.00075 ***
ETHNICCHINE             2.88415  1.07002   7.27  0.00703 ** 
ETHNICHISPA             0.99654  0.94898   1.10  0.29366    
ETHNICJAPAN             2.70200  0.83746  10.41  0.00125 ** 
heartat_stroke         -0.30314  0.66586   0.21  0.64892    
med_bp                 -2.96781  0.34174  75.42  < 2e-16 ***
med_other               0.01547  0.22878   0.00  0.94611    
SITE12                  7.45160  0.54501 186.94  < 2e-16 ***
SITE13                  7.76984  0.62503 154.53  < 2e-16 ***
SITE14                  1.67402  0.65880   6.46  0.01105 *  
SITE15                  3.83738  0.65874  33.93  5.7e-09 ***
SITE16                  8.79880  0.79382 122.86  < 2e-16 ***
SITE17                  2.85419  0.55546  26.40  2.8e-07 ***
statusx                -0.00648  0.06958   0.01  0.92576    
smoker                  0.11945  0.40876   0.09  0.77011    
visit                   0.07975  0.03232   6.09  0.01361 *  
chronicity:ETHNICBLACK  1.12487  1.09548   1.05  0.30450    
chronicity:ETHNICCHINE -0.96373  1.44834   0.44  0.50579    
chronicity:ETHNICHISPA  2.07573  1.85226   1.26  0.26244    
chronicity:ETHNICJAPAN  2.06311  1.62084   1.62  0.20307    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)     80.5    2.12

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.821 0.00802
Number of clusters:   2200   Maximum cluster size: 12 

HTN


Call:
geeglm(formula = htn_formula1, family = poisson(link = "log"), 
    data = gee_data, id = gee_data$ID, corstr = "ar1")

 Coefficients:
                            Estimate   Std.err   Wald Pr(>|W|)    
(Intercept)                -6.694038  0.539338 154.05  < 2e-16 ***
AGE0                        0.066472  0.010209  42.39  7.5e-11 ***
bmi                         0.035219  0.003970  78.69  < 2e-16 ***
cum_avg_unfair              0.010078  0.012439   0.66   0.4178    
diabete                     0.080672  0.065986   1.49   0.2215    
edu_g                      -0.108012  0.060149   3.22   0.0725 .  
ETHNICBLACK                 0.574904  0.305374   3.54   0.0598 .  
ETHNICCHINE                -0.077641  0.576075   0.02   0.8928    
ETHNICHISPA                -0.851822  0.469603   3.29   0.0697 .  
ETHNICJAPAN                 0.109704  0.526130   0.04   0.8348    
heartat_stroke              0.029408  0.099929   0.09   0.7685    
med_other                   0.103519  0.038535   7.22   0.0072 ** 
SITE12                      0.016498  0.090114   0.03   0.8547    
SITE13                      0.185830  0.091848   4.09   0.0430 *  
SITE14                     -0.427382  0.172849   6.11   0.0134 *  
SITE15                     -0.172435  0.153476   1.26   0.2612    
SITE16                      0.353091  0.201951   3.06   0.0804 .  
SITE17                     -0.126770  0.098553   1.65   0.1983    
statusx                     0.010455  0.012514   0.70   0.4035    
smoker                     -0.066211  0.068248   0.94   0.3320    
visit                       0.108039  0.005808 345.98  < 2e-16 ***
cum_avg_unfair:ETHNICBLACK -0.000694  0.016675   0.00   0.9668    
cum_avg_unfair:ETHNICCHINE  0.027792  0.028970   0.92   0.3374    
cum_avg_unfair:ETHNICHISPA  0.079814  0.030070   7.05   0.0079 ** 
cum_avg_unfair:ETHNICJAPAN  0.011330  0.030940   0.13   0.7142    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)    0.708  0.0599

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.835  0.0218
Number of clusters:   2200   Maximum cluster size: 12 

Risk Ratios:
                           Estimate    Wald Pr(>|W|)
AGE0                          1.069  42.393    0.000
bmi                           1.036  78.691    0.000
cum_avg_unfair                1.010   0.656    0.418
diabete                       1.084   1.495    0.221
edu_g                         0.898   3.225    0.073
ETHNICBLACK                   1.777   3.544    0.060
ETHNICCHINE                   0.925   0.018    0.893
ETHNICHISPA                   0.427   3.290    0.070
ETHNICJAPAN                   1.116   0.043    0.835
heartat_stroke                1.030   0.087    0.769
med_other                     1.109   7.217    0.007
SITE12                        1.017   0.034    0.855
SITE13                        1.204   4.093    0.043
SITE14                        0.652   6.114    0.013
SITE15                        0.842   1.262    0.261
SITE16                        1.423   3.057    0.080
SITE17                        0.881   1.655    0.198
statusx                       1.011   0.698    0.403
smoker                        0.936   0.941    0.332
visit                         1.114 345.982    0.000
cum_avg_unfair:ETHNICBLACK    0.999   0.002    0.967
cum_avg_unfair:ETHNICCHINE    1.028   0.920    0.337
cum_avg_unfair:ETHNICHISPA    1.083   7.045    0.008
cum_avg_unfair:ETHNICJAPAN    1.011   0.134    0.714

Call:
geeglm(formula = htn_formula2, family = poisson(link = "log"), 
    data = gee_data, id = gee_data$ID, corstr = "ar1")

 Coefficients:
                       Estimate  Std.err   Wald Pr(>|W|)    
(Intercept)            -6.57179  0.50832 167.14  < 2e-16 ***
AGE0                    0.06613  0.01016  42.34  7.7e-11 ***
bmi                     0.03578  0.00394  82.44  < 2e-16 ***
chronicity              0.10914  0.12411   0.77   0.3792    
diabete                 0.08231  0.06654   1.53   0.2161    
edu_g                  -0.11103  0.05970   3.46   0.0629 .  
ETHNICBLACK             0.69511  0.11312  37.76  8.0e-10 ***
ETHNICCHINE             0.44971  0.27562   2.66   0.1028    
ETHNICHISPA             0.01917  0.24907   0.01   0.9387    
ETHNICJAPAN             0.24829  0.20504   1.47   0.2259    
heartat_stroke          0.02901  0.10116   0.08   0.7743    
med_other               0.10626  0.03881   7.50   0.0062 ** 
SITE12                  0.02399  0.09021   0.07   0.7903    
SITE13                  0.18394  0.09075   4.11   0.0427 *  
SITE14                 -0.42479  0.17293   6.03   0.0140 *  
SITE15                 -0.16761  0.15308   1.20   0.2735    
SITE16                  0.34071  0.19870   2.94   0.0864 .  
SITE17                 -0.12749  0.09792   1.70   0.1929    
statusx                 0.00985  0.01255   0.62   0.4327    
smoker                 -0.06306  0.06759   0.87   0.3508    
visit                   0.10750  0.00579 345.04  < 2e-16 ***
chronicity:ETHNICBLACK -0.21611  0.16943   1.63   0.2021    
chronicity:ETHNICCHINE -0.01867  0.34972   0.00   0.9574    
chronicity:ETHNICHISPA  0.54525  0.36412   2.24   0.1343    
chronicity:ETHNICJAPAN  0.13441  0.32258   0.17   0.6769    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)    0.704  0.0563

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.834  0.0211
Number of clusters:   2200   Maximum cluster size: 12 

Risk Ratios:
                       Estimate    Wald Pr(>|W|)
AGE0                      1.068  42.340    0.000
bmi                       1.036  82.439    0.000
chronicity                1.115   0.773    0.379
diabete                   1.086   1.530    0.216
edu_g                     0.895   3.459    0.063
ETHNICBLACK               2.004  37.758    0.000
ETHNICCHINE               1.568   2.662    0.103
ETHNICHISPA               1.019   0.006    0.939
ETHNICJAPAN               1.282   1.466    0.226
heartat_stroke            1.029   0.082    0.774
med_other                 1.112   7.498    0.006
SITE12                    1.024   0.071    0.790
SITE13                    1.202   4.109    0.043
SITE14                    0.654   6.034    0.014
SITE15                    0.846   1.199    0.274
SITE16                    1.406   2.940    0.086
SITE17                    0.880   1.695    0.193
statusx                   1.010   0.616    0.433
smoker                    0.939   0.870    0.351
visit                     1.113 345.037    0.000
chronicity:ETHNICBLACK    0.806   1.627    0.202
chronicity:ETHNICCHINE    0.982   0.003    0.957
chronicity:ETHNICHISPA    1.725   2.242    0.134
chronicity:ETHNICJAPAN    1.144   0.174    0.677