Packages
library(shiny)
library(RColorBrewer)
library(RCurl)
## Warning: package 'RCurl' was built under R version 3.2.4
## Loading required package: bitops
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.2.4
library(reshape2)
library(grid)
library(lattice)
library(corrplot)
library(Hmisc)
## Loading required package: survival
## Loading required package: Formula
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
##
## format.pval, round.POSIXt, trunc.POSIXt, units
library(PerformanceAnalytics)
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
##
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
##
## legend
library(ggcorrplot)
Database
Summary
mydata1 <- mydata [ , c ( 3 , 4 , 5 , 6 , 7 ) ]
str(mydata1)
## 'data.frame': 20 obs. of 5 variables:
## $ pH_S30: num 6.3 5.4 5.4 6 5.9 5.6 5.8 5.8 5.9 5.9 ...
## $ P_S30 : num 5 2 1 3 16 28 13 24 15 9 ...
## $ Mg_S30: num 19 17 17 23 18 16 16 17 20 18 ...
## $ k_S30 : num 13 13 10 15 26 41 32 34 19 26 ...
## $ Ca_S30: num 294 84 68 133 101 72 71 74 131 105 ...
summary(mydata1)
## pH_S30 P_S30 Mg_S30 k_S30
## Min. :5.40 Min. : 1.00 Min. :14.00 Min. :10.0
## 1st Qu.:5.60 1st Qu.: 8.00 1st Qu.:16.00 1st Qu.:18.5
## Median :5.70 Median :16.00 Median :17.50 Median :26.0
## Mean :5.76 Mean :17.25 Mean :17.65 Mean :26.8
## 3rd Qu.:5.90 3rd Qu.:25.25 3rd Qu.:18.00 3rd Qu.:34.5
## Max. :6.30 Max. :44.00 Max. :23.00 Max. :47.0
## Ca_S30
## Min. : 56.00
## 1st Qu.: 71.75
## Median : 90.00
## Mean :102.45
## 3rd Qu.:114.50
## Max. :294.00
Boxplot
boxplot(mydata1, main="Range of pH on Melrose soil",
xlab="pH",
ylab="Range",
col="grey",
border="black",
horizontal=FALSE,
notch=FALSE)

Computing of the correlation matrix
As an output, the rcorr() function returns a list including the following elements :
r : the correlation matrix.
P : the p-values corresponding to the significance levels of the correlations.
Printing the correlation matrix
signif(res$r, 2)
## pH_S30 P_S30 Mg_S30 k_S30 Ca_S30
## pH_S30 1.000 -0.087 0.210 0.05 0.62
## P_S30 -0.087 1.000 -0.034 0.45 -0.18
## Mg_S30 0.210 -0.034 1.000 -0.63 0.55
## k_S30 0.050 0.450 -0.630 1.00 -0.54
## Ca_S30 0.620 -0.180 0.550 -0.54 1.00
Printing the p-values of the correlations
signif(res$P,2)
## pH_S30 P_S30 Mg_S30 k_S30 Ca_S30
## pH_S30 NA 0.710 0.3800 0.8400 0.0036
## P_S30 0.7100 NA 0.8900 0.0470 0.4500
## Mg_S30 0.3800 0.890 NA 0.0028 0.0120
## k_S30 0.8400 0.047 0.0028 NA 0.0150
## Ca_S30 0.0036 0.450 0.0120 0.0150 NA
Visualize a correlation matrix
flattenCorrMatrix(res$r, res$P)
## row column cor p
## 1 pH_S30 P_S30 -0.08742657 0.713983575
## 2 pH_S30 Mg_S30 0.20759511 0.379814114
## 3 P_S30 Mg_S30 -0.03430656 0.885827122
## 4 pH_S30 k_S30 0.04959274 0.835516351
## 5 P_S30 k_S30 0.44994530 0.046526090
## 6 Mg_S30 k_S30 -0.63188165 0.002801105
## 7 pH_S30 Ca_S30 0.61877447 0.003629899
## 8 P_S30 Ca_S30 -0.17959332 0.448664866
## 9 Mg_S30 Ca_S30 0.54875857 0.012223786
## 10 k_S30 Ca_S30 -0.53617066 0.014811609
Visualize a correlation matrix using a correlogram
corrplot(mcor, type="upper", order="hclust", tl.col="black", tl.srt=0)
