combined.aov <- aov(AUC ~ features, combined)
summary(combined.aov)
##              Df Sum Sq Mean Sq F value Pr(>F)    
## features      6 1.6275  0.2712  306741 <2e-16 ***
## Residuals   168 0.0001  0.0000                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
HSD.test(combined.aov, "features", console = TRUE)
## 
## Study: combined.aov ~ "features"
## 
## HSD Test for AUC 
## 
## Mean Square Error:  8.842712e-07 
## 
## features,  means
## 
##                        AUC          std  r       Min       Max
## all              0.9604316 0.0004776338 25 0.9596673 0.9612425
## behavior         0.9491307 0.0005427855 25 0.9481725 0.9498628
## behavior-network 0.9581083 0.0004253070 25 0.9574684 0.9588556
## behavior-text    0.9518454 0.0005522874 25 0.9509084 0.9525870
## network          0.7089728 0.0014375619 25 0.7071942 0.7121525
## network-text     0.8467852 0.0011093575 25 0.8447357 0.8482490
## text             0.7692391 0.0013725823 25 0.7681056 0.7723861
## 
## alpha: 0.05 ; Df Error: 168 
## Critical Value of Studentized Range: 4.220582 
## 
## Honestly Significant Difference: 0.0007937708 
## 
## Means with the same letter are not significantly different.
## 
## Groups, Treatments and means
## a     all                 0.9604 
## b     behavior-network    0.9581 
## c     behavior-text       0.9518 
## d     behavior            0.9491 
## e     network-text        0.8468 
## f     text                0.7692 
## g     network             0.709
tukeyPlot(combined, groupVars = "features")