Storms and other severe weather events can cause both public health and economic problems for communities and municipalities. Many severe events can result in fatalities, injuries, and property damage.The goal of this assignment is to explore the NOAA Storm Database and answer some basic questions about severe weather events. - Which types of events are most harmful with respect to population health across United States. - Which types of events have the greatest economic consequences across United States.
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
setwd("~/Downloads/RepData_PeerAssessment2")
if(!file.exists('StormData.csv.bz2')){
url <- "http://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2"
fileName <- file.path(getwd(),'StormData.csv.bz2')
download.file(url,destfile=fileName)
}
stormData <- read.csv(bzfile('StormData.csv.bz2'), header = TRUE)
str(stormData)
## 'data.frame': 902297 obs. of 37 variables:
## $ STATE__ : num 1 1 1 1 1 1 1 1 1 1 ...
## $ BGN_DATE : Factor w/ 16335 levels "1/1/1966 0:00:00",..: 6523 6523 4242 11116 2224 2224 2260 383 3980 3980 ...
## $ BGN_TIME : Factor w/ 3608 levels "00:00:00 AM",..: 272 287 2705 1683 2584 3186 242 1683 3186 3186 ...
## $ TIME_ZONE : Factor w/ 22 levels "ADT","AKS","AST",..: 7 7 7 7 7 7 7 7 7 7 ...
## $ COUNTY : num 97 3 57 89 43 77 9 123 125 57 ...
## $ COUNTYNAME: Factor w/ 29601 levels "","5NM E OF MACKINAC BRIDGE TO PRESQUE ISLE LT MI",..: 13513 1873 4598 10592 4372 10094 1973 23873 24418 4598 ...
## $ STATE : Factor w/ 72 levels "AK","AL","AM",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ EVTYPE : Factor w/ 985 levels " HIGH SURF ADVISORY",..: 834 834 834 834 834 834 834 834 834 834 ...
## $ BGN_RANGE : num 0 0 0 0 0 0 0 0 0 0 ...
## $ BGN_AZI : Factor w/ 35 levels ""," N"," NW",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ BGN_LOCATI: Factor w/ 54429 levels ""," Christiansburg",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ END_DATE : Factor w/ 6663 levels "","1/1/1993 0:00:00",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ END_TIME : Factor w/ 3647 levels ""," 0900CST",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ COUNTY_END: num 0 0 0 0 0 0 0 0 0 0 ...
## $ COUNTYENDN: logi NA NA NA NA NA NA ...
## $ END_RANGE : num 0 0 0 0 0 0 0 0 0 0 ...
## $ END_AZI : Factor w/ 24 levels "","E","ENE","ESE",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ END_LOCATI: Factor w/ 34506 levels ""," CANTON"," TULIA",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ LENGTH : num 14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
## $ WIDTH : num 100 150 123 100 150 177 33 33 100 100 ...
## $ F : int 3 2 2 2 2 2 2 1 3 3 ...
## $ MAG : num 0 0 0 0 0 0 0 0 0 0 ...
## $ FATALITIES: num 0 0 0 0 0 0 0 0 1 0 ...
## $ INJURIES : num 15 0 2 2 2 6 1 0 14 0 ...
## $ PROPDMG : num 25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
## $ PROPDMGEXP: Factor w/ 19 levels "","-","?","+",..: 17 17 17 17 17 17 17 17 17 17 ...
## $ CROPDMG : num 0 0 0 0 0 0 0 0 0 0 ...
## $ CROPDMGEXP: Factor w/ 9 levels "","?","0","2",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ WFO : Factor w/ 542 levels ""," CI","%SD",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ STATEOFFIC: Factor w/ 250 levels "","ALABAMA, Central",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ ZONENAMES : Factor w/ 25112 levels ""," "| __truncated__,..: 1 1 1 1 1 1 1 1 1 1 ...
## $ LATITUDE : num 3040 3042 3340 3458 3412 ...
## $ LONGITUDE : num 8812 8755 8742 8626 8642 ...
## $ LATITUDE_E: num 3051 0 0 0 0 ...
## $ LONGITUDE_: num 8806 0 0 0 0 ...
## $ REMARKS : Factor w/ 436781 levels "","\t","\t\t",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ REFNUM : num 1 2 3 4 5 6 7 8 9 10 ...
we are interested in 7 variables for our analysis to answer the two questions.
We are going to subset our data to make the process faster
stormData <- select(stormData, EVTYPE, FATALITIES, INJURIES, PROPDMG, PROPDMGEXP, CROPDMG, CROPDMGEXP)
str(stormData)
## 'data.frame': 902297 obs. of 7 variables:
## $ EVTYPE : Factor w/ 985 levels " HIGH SURF ADVISORY",..: 834 834 834 834 834 834 834 834 834 834 ...
## $ FATALITIES: num 0 0 0 0 0 0 0 0 1 0 ...
## $ INJURIES : num 15 0 2 2 2 6 1 0 14 0 ...
## $ PROPDMG : num 25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
## $ PROPDMGEXP: Factor w/ 19 levels "","-","?","+",..: 17 17 17 17 17 17 17 17 17 17 ...
## $ CROPDMG : num 0 0 0 0 0 0 0 0 0 0 ...
## $ CROPDMGEXP: Factor w/ 9 levels "","?","0","2",..: 1 1 1 1 1 1 1 1 1 1 ...
The following shows the top 7 severe weather events that caused the most fatalities.
fatality.data <- group_by(stormData, EVTYPE)
fatality.data7 <- summarise(fatality.data, total = sum(FATALITIES)) %>% arrange(desc(total)) %>% top_n(7)
## Selecting by total
fatality.data7
## Source: local data frame [7 x 2]
##
## EVTYPE total
## (fctr) (dbl)
## 1 TORNADO 5633
## 2 EXCESSIVE HEAT 1903
## 3 FLASH FLOOD 978
## 4 HEAT 937
## 5 LIGHTNING 816
## 6 TSTM WIND 504
## 7 FLOOD 470
barplot(fatality.data7$total,
names = fatality.data7$EVTYPE,
xlab = "Event Type",las=2,cex.names=0.5,
ylab = "Total Deaths",
main = "Top 7 Weather Events showing Fatality",col = "red"
)
Tornado caused the most fatalities.
The following shows the top 7 severe weather events that caused the most injuries.
injury.data <- group_by(stormData, EVTYPE)
injury.data7 <- summarise(injury.data, total = sum(INJURIES)) %>% arrange(desc(total)) %>% top_n(7)
## Selecting by total
injury.data7
## Source: local data frame [7 x 2]
##
## EVTYPE total
## (fctr) (dbl)
## 1 TORNADO 91346
## 2 TSTM WIND 6957
## 3 FLOOD 6789
## 4 EXCESSIVE HEAT 6525
## 5 LIGHTNING 5230
## 6 HEAT 2100
## 7 ICE STORM 1975
barplot(injury.data7$total,
names = injury.data7$EVTYPE,
xlab = "Event Type",las=2,cex.names=0.5,
ylab = "Total Injury",
main = "Top 7 Weather Events showing Injury",col = "blue"
)
Tornado caused the most Injuries.
Economic impact is measured by total of property damages and crop damages. The factor variablies PROPDMGEXP and CROPDMGEXP have the following levels.
unique(stormData$PROPDMGEXP)
## [1] K M B m + 0 5 6 ? 4 2 3 h 7 H - 1 8
## Levels: - ? + 0 1 2 3 4 5 6 7 8 B h H K m M
unique(stormData$CROPDMGEXP)
## [1] M K m B ? 0 k 2
## Levels: ? 0 2 B k K m M
We are going to convert the property damage and crop damage data into comparable numerical forms according to the meaning of units described in the code book, Storm Events. Both PROPDMGEXP and CROPDMGEXP columns record a multiplier for each observation where we have Hundred (H), Thousand (K), *** Million (M)*** and Billion (B).
stormData$PROPDMGEXP <- as.character(stormData$PROPDMGEXP)
stormData$PROPDMGEXP = gsub("\\-|\\+|\\?","0",stormData$PROPDMGEXP)
stormData$PROPDMGEXP = gsub("B|b", "9", stormData$PROPDMGEXP)
stormData$PROPDMGEXP = gsub("M|m", "6", stormData$PROPDMGEXP)
stormData$PROPDMGEXP = gsub("K|k", "3", stormData$PROPDMGEXP)
stormData$PROPDMGEXP = gsub("H|h", "2", stormData$PROPDMGEXP)
stormData$PROPDMGEXP <- as.numeric(stormData$PROPDMGEXP)
stormData$PROPDMGEXP[is.na(stormData$PROPDMGEXP)] = 0
stormData$property.damage.data<- stormData$PROPDMG * 10^stormData$PROPDMGEXP
property.damage <- aggregate(property.damage.data~EVTYPE, data=stormData, sum)
property.damage<- property.damage[order(-property.damage$property.damage.data),]
property.damage7<-property.damage[1:7,]
property.damage7
## EVTYPE property.damage.data
## 170 FLOOD 144657709807
## 411 HURRICANE/TYPHOON 69305840000
## 834 TORNADO 56947380676
## 670 STORM SURGE 43323536000
## 153 FLASH FLOOD 16822673978
## 244 HAIL 15735267513
## 402 HURRICANE 11868319010
stormData$CROPDMGEXP <- as.character(stormData$CROPDMGEXP)
stormData$CROPDMGEXP = gsub("\\-|\\+|\\?","0",stormData$CROPDMGEXP)
stormData$CROPDMGEXP = gsub("B|b", "9", stormData$CROPDMGEXP)
stormData$CROPDMGEXP = gsub("M|m", "6", stormData$CROPDMGEXP)
stormData$CROPDMGEXP = gsub("K|k", "3", stormData$CROPDMGEXP)
stormData$CROPDMGEXP = gsub("H|h", "2", stormData$CROPDMGEXP)
stormData$CROPDMGEXP <- as.numeric(stormData$CROPDMGEXP)
stormData$CROPDMGEXP[is.na(stormData$CROPDMGEXP)] = 0
stormData$crop.damage.data<- stormData$CROPDMG * 10^stormData$CROPDMGEXP
crop.damage <- aggregate(crop.damage.data~EVTYPE, data=stormData, sum)
crop.damage<- crop.damage[order(-crop.damage$crop.damage.data),]
crop.damage7<-crop.damage[1:7,]
crop.damage7
## EVTYPE crop.damage.data
## 95 DROUGHT 13972566000
## 170 FLOOD 5661968450
## 590 RIVER FLOOD 5029459000
## 427 ICE STORM 5022113500
## 244 HAIL 3025954473
## 402 HURRICANE 2741910000
## 411 HURRICANE/TYPHOON 2607872800
total.damage <- aggregate(property.damage.data+ crop.damage.data~EVTYPE, data=stormData, sum)
names(total.damage)[2] <- "total"
total.damage7 <- arrange(total.damage, desc(total)) %>% top_n(7)
## Selecting by total
total.damage7
## EVTYPE total
## 1 FLOOD 150319678257
## 2 HURRICANE/TYPHOON 71913712800
## 3 TORNADO 57362333946
## 4 STORM SURGE 43323541000
## 5 HAIL 18761221986
## 6 FLASH FLOOD 18243991078
## 7 DROUGHT 15018672000
barplot(total.damage7$total,
names = total.damage7$EVTYPE,
xlab = "Event Type",las=2,cex.names=0.5,
ylab = "Total Loss of Economy",
main = "Top 7 Weather Events showing Economy Effect",col = "darkgreen"
)
- This analysis shows FLOOD caused the most property damage. DROUGHT caused the most crop damange. - FLOOD caused the most total damage.
After analyzing the data we conclude following results: - TORNADO caused the most fatalities. - TORNADO caused the most Injuries. - FLOOD caused the most property damage. - DROUGHT caused the most crop damange. - FLOOD caused the most economic impact.