Found a fascinating source of data on calories and nutrients of going out to eat vs. not. The link is http://www.ars.usda.gov/SP2UserFiles/Place/80400530/pdf/1112/Table_53_RST_GEN_11.pdf and just use the first page.
Look at the caloric intake.
library(dplyr)
# required cols will be: gender, age_group, Total intake kcal for restaurant consumers, Total intake kcal for non-consumers, Percentage from restaurant for restaurant consumers
df <- read.csv("calories and restaurants.csv", header = TRUE, sep = ",")
df <- df[ , which(names(df) %in% c("Gender","Age","Total.intake.kcal.for.restaurant.consumers","Total.intake.kcal.for.non.consumers","Percentage.from.restaurant.for.restaurant.consumers"))]
names(df) <- c('gender','age_group','eat_outs_total_kcal','eat_outs_rstrnt_pct','eat_ins_total_kcal')
df[c(2:6),'gender'] <- "Male"
df[c(8:12),'gender'] <- "Female"
df
## gender age_group eat_outs_total_kcal eat_outs_rstrnt_pct
## 1 Male 2 to 5 1646 30
## 2 Male 6 to 11 2128 34
## 3 Male 12 to 19 2766 48
## 4 Male 20 to 39 2816 49
## 5 Male 40 to 59 2672 40
## 6 Male 60 + 2236 36
## 7 Female 2 to 5 1573 30
## 8 Female 6 to 11 1972 39
## 9 Female 12 to 19 1837 49
## 10 Female 20 to 39 2086 46
## 11 Female 40 to 59 1946 42
## 12 Female 60 + 1725 39
## eat_ins_total_kcal
## 1 1650
## 2 2062
## 3 2232
## 4 2671
## 5 2539
## 6 2121
## 7 1487
## 8 1797
## 9 1771
## 10 1905
## 11 1700
## 12 1523
summarise(group_by(df, gender), eat_outs_avg_cal=mean(eat_outs_total_kcal), eat_ins_avg_cal=mean(eat_ins_total_kcal))
## Source: local data frame [2 x 3]
##
## gender eat_outs_avg_cal eat_ins_avg_cal
## (fctr) (dbl) (dbl)
## 1 Female 1856.500 1697.167
## 2 Male 2377.333 2212.500
summarise(group_by(df, age_group), eat_outs_avg_cal=mean(eat_outs_total_kcal), eat_ins_avg_cal=mean(eat_ins_total_kcal))
## Source: local data frame [6 x 3]
##
## age_group eat_outs_avg_cal eat_ins_avg_cal
## (fctr) (dbl) (dbl)
## 1 12 to 19 2301.5 2001.5
## 2 2 to 5 1609.5 1568.5
## 3 20 to 39 2451.0 2288.0
## 4 40 to 59 2309.0 2119.5
## 5 6 to 11 2050.0 1929.5
## 6 60 + 1980.5 1822.0
summarise(group_by(df, gender), eat_outs_rstrnt_cal_pct=mean(eat_outs_rstrnt_pct))
## Source: local data frame [2 x 2]
##
## gender eat_outs_rstrnt_cal_pct
## (fctr) (dbl)
## 1 Female 40.83333
## 2 Male 39.50000
summarise(group_by(df, age_group), eat_outs_rstrnt_cal_pct=mean(eat_outs_rstrnt_pct))
## Source: local data frame [6 x 2]
##
## age_group eat_outs_rstrnt_cal_pct
## (fctr) (dbl)
## 1 12 to 19 48.5
## 2 2 to 5 30.0
## 3 20 to 39 47.5
## 4 40 to 59 41.0
## 5 6 to 11 36.5
## 6 60 + 37.5
There was no column for “EAT INS RESTAURANT PCT” (unless I missed it…)