Josh Day
April 21, 2014
\( H_A: X_i \sim (1-\pi)N(0,1) + \pi N(A, 1), \; i=1,...,n \)
Did we observe pure noise or noise plus signal?
How do we parameterize \( \pi, A \)?
For example (Tukey's Higher Criticism Statistic):
\[ K_2(u,v)=\frac{1}{2}\frac{(u-v)^2}{v(1-v)} \]
(1) Obtain p-values \( p_i = P( N(0,1) > X_i) \)
(2) Order p-values \( p_{(1)},...,p_{(n)} \)
(3) get \( K_s(\;F_n(p_{(i)}), p_{(i)}\;) = K_s(\frac{i}{n}, p_{(i)}) \) for each \( i \)
(4) get \( S_n(s) = \max K_s \)
\( s=2 \implies \) \( S_n(s)=\max \frac{1}{2}\frac{(i/n-p_{(i)})^2}{p_{(i)}(1-p_{(i)})} \)
Asymptotic Distribution: \[ nS_n(s) - r_n \rightarrow^{d} Y_4 \]
where \[ r_n = \log(\log n) +\frac{1}{2}\log(\log(\log n)) - \frac{1}{2}\log(4\pi) \] and \[ F_{Y_4}(x)=\exp(-4\exp(-x)) \]
\[ u=i/n \;\;\; v=p_{(i)} \]
\[ K_1(u, v) = u\log\left(\frac{u}{v}\right)+(1-u)log\left(\frac{1-u}{1-v}\right) \]