Client Profile
India’s leading super speciality centre for research and treatment of cardiovascular diseases.
Research Team Members
71610033 - Kunal Dharmadhikari
71610051 - Praveen K Orvakanti
71610086 - Sudarshan Singh
71610105 - Vikram Menon Malik
71610113 - Vipul Manocha
Decision Problem
Identifying key strategic locations to put up billboards to advertise FHRI’s emergency response numbers & services.
Research Objectives
To segment customers & identify potential business opportunities.
Why we picked Pune?
Rapid development & urbanization of the city of Pune (2nd largest city in Maharashtra).
Ever increasing costs & limited availability of land in Mumbai. List the proxy entities you are going to search for.
Recently shortlisted under the smart city initiative with focus on driving social transformation, developing infrastructure & building on its strong business environment.
Client’s Target Segment
Large MNC’s.
Middle & Upper SEC.
High Net-worth Individuals.
Service businesses like Education, Health Care.
Entity List
Restaurants
Hospitals
Airport
Results
Inference
Near New Airport Road & Pune Nagpur Road
Intersection of the New Airport Road & Pune Nagpur Road where volume of commuters is high.
Wide roads & highways making placing billboards an attractive option as vehicles on road get glimpse of advertised billboard.
Intersection of Koregaon Park Road & N Main Road
Located near German Bakery, Starbucks, Taj Vivanta & Country Club.
Representative of the effluent & HNI population in the city.
Subhash Chandra Bose Chowk
Representative of the middle & upper SEC.
Restaurants, Hospitals and MNC’s like TCS nearby.
Population density is high with high footfall because of the location.
Located near the Mumbai highway, College of Engineering Pune & Railway station.
Khanduji Baba Chowk
Footfall is high as location is major intersection connecting rest of Pune.
Central Pune, located between Deccan Gymkhana, Hospitals & Restaurants like Barbeque Nation.
Vehicular traffic which stops at the traffic signals raises probability of viewership of the advertised billboard.
R Program Code
1. Map Overview R-Program.
library("RCurl")
library("jsonlite")
library("plotGoogleMaps")
library("geosphere")
key = "AIzaSyAC9fRXK8HIZO5ISi4HRipr0Q7_5dj4tGU"
url = paste0("https://maps.googleapis.com/maps/api/place/radarsearch/json?&query=hospitals+in+pune&types=hospital&location=18.520430,73.856744&radius=15000&key=",key)
doc <- getURL(url, ssl.verifyhost = 0L, ssl.verifypeer = 0L)
x <- jsonlite::fromJSON(doc)
hospitals = x$results$geometry$location
head(hospitals)
url = paste0("https://maps.googleapis.com/maps/api/place/radarsearch/json?&query=restaurants+in+pune&types=restaurant&location=18.520430,73.856744&radius=15000&key=",key)
doc <- getURL(url, ssl.verifyhost = 0L, ssl.verifypeer = 0L)
x <- jsonlite::fromJSON(doc)
restaurants = x$results$geometry$location
head(restaurants)
url = paste0("https://maps.googleapis.com/maps/api/place/radarsearch/json?&query=airport+in+pune&types=airport&location=18.520430,73.856744&radius=15000&key=",key)
doc <- getURL(url, ssl.verifyhost = 0L, ssl.verifypeer = 0L)
x <- jsonlite::fromJSON(doc)
airports = x$results$geometry$location
head(airports)
hospitals$type = "Hospital"
restaurants$type = "Restaurant"
airports$type = "Airport"
data = rbind(hospitals,restaurants,airports)
dim(data)
write.csv(data,"pune_places.csv", row.names = F)
sample = data
coordinates(sample) <-~ lng +lat # Create cordinates
proj4string(sample) = CRS('+proj=longlat +datum=WGS84') # Add Projections
m<-mcGoogleMaps(sample,zcol = "type", mapTypeId='ROADMAP',legend=TRUE) #Plot on Google maps
2. Distance Matrix R Program.
library("RCurl")
library("jsonlite")
library("plotGoogleMaps")
library("geosphere")
library("ggplot2")
library("plotGoogleMaps")
key = "AIzaSyAC9fRXK8HIZO5ISi4HRipr0Q7_5dj4tGU"
# hospitals
url = paste0("https://maps.googleapis.com/maps/api/place/radarsearch/json?&query=hospitals+in+pune&types=hospital&location=18.520430,73.856744&radius=15000&key=",key)
doc <- getURL(url, ssl.verifyhost = 0L, ssl.verifypeer = 0L)
x <- jsonlite::fromJSON(doc)
hospitals = x$results$geometry$location
head(hospitals)
# restaurants
url = paste0("https://maps.googleapis.com/maps/api/place/radarsearch/json?&query=restaurants+in+pune&types=restaurant&location=18.520430,73.856744&radius=15000&key=",key)
doc <- getURL(url, ssl.verifyhost = 0L, ssl.verifypeer = 0L)
x <- jsonlite::fromJSON(doc)
restaurants = x$results$geometry$location
head(restaurants)
# airport
url = paste0("https://maps.googleapis.com/maps/api/place/radarsearch/json?&query=airport+in+pune&types=airport&location=18.520430,73.856744&radius=15000&key=",key)
doc <- getURL(url, ssl.verifyhost = 0L, ssl.verifypeer = 0L)
x <- jsonlite::fromJSON(doc)
airports = x$results$geometry$location
head(airports)
hospitals$type = "Hospital"
restaurants$type = "Restaurant"
airports$type = "Airport"
sample = hospitals
coordinates(sample) <-~ lng +lat # Create cordinates
proj4string(sample) = CRS('+proj=longlat +datum=WGS84') # Add Projections
# m<-mcGoogleMaps(sample,zcol = "type", mapTypeId='ROADMAP') # Plot on Google maps
# Get the coordinates
p2 = hospitals[,2:1]
# calculate distances
dist_mat = matrix(0,nrow(p2),nrow(p2))
for (i in 1:nrow(p2)){
for (j in 1:nrow(p2)){
dist_mat[i,j] = distCosine(p2[i,],p2[j,], r=6378173)/1000
}
}
class(dist_mat)
dist_mat[1:10,1:10]
max(dist_mat)
# Create clusters based in distances
fit <- hclust(as.dist(dist_mat), method="ward")
plot(fit) # display dendogram
groups <- cutree(fit, k=10) # cut tree into 10 clusters
# draw dendogram with red borders around the 10 clusters
rect.hclust(fit, k=10, border="red")
sample = restaurants
coordinates(sample) <-~ lng +lat # Create cordinates
proj4string(sample) = CRS('+proj=longlat +datum=WGS84') # Add Projections
# m<-mcGoogleMaps(sample,zcol = "type", mapTypeId='ROADMAP') # Plot on Google maps
# Get the coordinates
p2 = restaurants[,2:1]
# calculate distances
dist_mat = matrix(0,nrow(p2),nrow(p2))
for (i in 1:nrow(p2)){
for (j in 1:nrow(p2)){
dist_mat[i,j] = distCosine(p2[i,],p2[j,], r=6378173)/1000
}
}
class(dist_mat)
dist_mat[1:10,1:10]
max(dist_mat)
# Create clusters based in distances
fit <- hclust(as.dist(dist_mat), method="ward")
plot(fit) # display dendogram
groups <- cutree(fit, k=10) # cut tree into 10 clusters
# draw dendogram with red borders around the 10 clusters
rect.hclust(fit, k=10, border="red")
sample = airports
coordinates(sample) <-~ lng +lat # Create cordinates
proj4string(sample) = CRS('+proj=longlat +datum=WGS84') # Add Projections
# m<-mcGoogleMaps(sample,zcol = "type", mapTypeId='ROADMAP') # Plot on Google maps
# Get the coordinates
p2 = airports[,2:1]
# calculate distances
dist_mat = matrix(0,nrow(p2),nrow(p2))
for (i in 1:nrow(p2)){
for (j in 1:nrow(p2)){
dist_mat[i,j] = distCosine(p2[i,],p2[j,], r=6378173)/1000
}
}
class(dist_mat)
dist_mat[1:10,1:10]
max(dist_mat)
# Create clusters based in distances
fit <- hclust(as.dist(dist_mat), method="ward")
plot(fit) # display dendogram
groups <- cutree(fit, k=10) # cut tree into 10 clusters
# draw dendogram with red borders around the 10 clusters
rect.hclust(fit, k=10, border="red")
Copyright(c) 2016 Forbesganj Consulting Services. All rights reserved.