随机在A、B、C三地抽取家蝇,测量翅膀长度,一共五十个样本,数字特征分别为μ1、μ2和μ3。问题:三地家蝇翅膀长度是否有差异?
H0假设:μ1=μ2=μ3,即三地家蝇翅膀长度无显著差异
Ha假设:μ1,μ2,μ3不完全相等,即三地家蝇翅膀长度至少有一个与其他样地有显著差异
α=0.05
# 输入数据
site1 <- c(45, 44, 43, 47, 48, 44, 46, 44, 40, 45, 42, 40, 43, 46, 47, 45, 46,
45, 43, 44)
site2 <- c(45, 48, 47, 43, 46, 47, 48, 46, 43, 49, 46, 43, 47, 46, 47, 46, 45,
46, 44, 45, 46, 44, 43, 42, 45)
site3 <- c(47, 48, 45, 46, 46, 44, 45, 48, 49, 50, 49, 48, 47, 44, 45, 46, 45,
43, 44, 45, 46, 43, 42)
fly.survey <- data.frame(length = c(site1, site2, site3), site = factor(c(rep("1",
20), rep("2", 25), rep("3", 23))))
# 检查数据
options(digits = 3) # default value = 7
tapply(fly.survey$length, fly.survey$site, mean)
## 1 2 3
## 44.4 45.5 45.9
tapply(fly.survey$length, fly.survey$site, var)
## 1 2 3
## 4.56 3.26 4.48
boxplot(length ~ site, data = fly.survey, xlab = "Sites", ylab = "Length")
# Bartlett Test方差齐性检验(参数)
bartlett.test(length ~ site, data = fly.survey)
##
## Bartlett test of homogeneity of variances
##
## data: length by site
## Bartlett's K-squared = 0.764, df = 2, p-value = 0.6825
# 单因子方差分析One Way ANOVA
fit <- aov(length ~ site, data = fly.survey)
summary(fit)
## Df Sum Sq Mean Sq F value Pr(>F)
## site 2 26.3 13.15 3.24 0.045 *
## Residuals 65 263.4 4.05
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(fit)
单因子方差分析结果显示F value = 3.24 ,Pr(>F) = 0.045,因此拒绝H0假设,即认为三地家蝇翅膀长度在统计学上有显著差异。