library(ISLR)
data(Auto)
model.simple <- lm(mpg ~ displacement, data = Auto)
summary(model.simple)
##
## Call:
## lm(formula = mpg ~ displacement, data = Auto)
##
## Residuals:
## Min 1Q Median 3Q Max
## -12.917 -3.024 -0.502 2.351 18.613
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 35.12064 0.49443 71.0 <2e-16 ***
## displacement -0.06005 0.00224 -26.8 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.64 on 390 degrees of freedom
## Multiple R-squared: 0.648, Adjusted R-squared: 0.647
## F-statistic: 719 on 1 and 390 DF, p-value: <2e-16
model.multi <- lm(mpg ~ . - name, data = Auto)
summary(model.multi)
##
## Call:
## lm(formula = mpg ~ . - name, data = Auto)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.590 -2.157 -0.117 1.869 13.060
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.72e+01 4.64e+00 -3.71 0.00024 ***
## cylinders -4.93e-01 3.23e-01 -1.53 0.12780
## displacement 1.99e-02 7.51e-03 2.65 0.00844 **
## horsepower -1.70e-02 1.38e-02 -1.23 0.21963
## weight -6.47e-03 6.52e-04 -9.93 < 2e-16 ***
## acceleration 8.06e-02 9.88e-02 0.82 0.41548
## year 7.51e-01 5.10e-02 14.73 < 2e-16 ***
## origin 1.43e+00 2.78e-01 5.13 4.7e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.33 on 384 degrees of freedom
## Multiple R-squared: 0.821, Adjusted R-squared: 0.818
## F-statistic: 252 on 7 and 384 DF, p-value: <2e-16
# install.packages('corrgram') при необходимости
library(corrgram)
## Loading required package: seriation
## Loading required package: cluster
## Loading required package: TSP
## Loading required package: gclus
## Loading required package: grid
## Loading required package: colorspace
corrgram(Auto)
Проинтерпретируйте табличку. Почему при достаточно сильной отрицательной корреляции между cylinders и mpg коэффициент регрессии при cylinders в нашей модели не значим? Сравните с
cor.test(Auto$mpg, Auto$cylinders)
##
## Pearson's product-moment correlation
##
## data: Auto$mpg and Auto$cylinders
## t = -24.42, df = 390, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.8140 -0.7352
## sample estimates:
## cor
## -0.7776
и прокомментируйте