logTrailsB Regression Models

logTrailsB Regression Model 1

## Loading required package: Matrix
## KernSmooth 2.23 loaded
## Copyright M. P. Wand 1997-2009
## 
## Attaching package: 'lmerTest'
## 
## The following object is masked from 'package:lme4':
## 
##     lmer
## 
## The following object is masked from 'package:stats':
## 
##     step
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: logTrailsB ~ (Age + IPVstatus + Sex + PovStat)^4 + (Age | HNDid) +      (1 | subclass) 
##    Data: IPVandCognitionDataSet2 
## REML criterion at convergence: 239.3 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 7.47e-01     
##           Age         1.72e-02 1.00
##  subclass (Intercept) 2.14e-06     
##  Residual             3.24e-01     
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## Fixed Effects:
##                        (Intercept)                                 Age  
##                           4.489142                            0.000787  
##                         IPVstatus1                              SexMen  
##                          -0.228592                           -0.428486  
##                       PovStatBelow                      Age:IPVstatus1  
##                           0.637323                            0.007884  
##                         Age:SexMen                    Age:PovStatBelow  
##                          -0.007740                            0.054454  
##                  IPVstatus1:SexMen             IPVstatus1:PovStatBelow  
##                           1.069023                           -0.335275  
##                SexMen:PovStatBelow               Age:IPVstatus1:SexMen  
##                           0.432274                           -0.033118  
##        Age:IPVstatus1:PovStatBelow             Age:SexMen:PovStatBelow  
##                          -0.001306                            0.013654  
##     IPVstatus1:SexMen:PovStatBelow  Age:IPVstatus1:SexMen:PovStatBelow  
##                          -0.165345                            0.035246
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Random term (Age | HNDid) was eliminated because of having correlation +-1 or NaN
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Random term (Age + 0 | HNDid) was eliminated because of standard deviation being equal to 0 
## 
## Random term (1 | subclass) was eliminated because of standard deviation being equal to 0
## 
## Random effects:
##             Chi.sq Chi.DF elim.num p.value
## (1 | HNDid)  50.37      1     kept < 1e-07
## 
## Fixed effects:
##                           Sum Sq Mean Sq NumDF  DenDF F.value elim.num
## Age:IPVstatus:Sex:PovStat 0.0013  0.0013     1 104.50  0.0114        1
## Age:IPVstatus:PovStat     0.0285  0.0285     1 106.54  0.1581        2
## Age:IPVstatus:Sex         0.0330  0.0330     1 110.77  0.2044        3
## Age:IPVstatus             0.0246  0.0246     1 111.69  0.0977        4
## IPVstatus:Sex:PovStat     0.0455  0.0455     1  52.23  0.4080        5
## Age:Sex:PovStat           0.0793  0.0793     1 114.96  0.9784        6
## Age:Sex                   0.0177  0.0177     1 115.45  0.0108        7
## Sex:PovStat               0.0638  0.0638     1  57.49  0.6347        8
## IPVstatus:PovStat         0.2055  0.2055     1  55.85  1.7008        9
## Age                       0.9812  0.9812     1 118.81 10.3788     kept
## IPVstatus                 0.0608  0.0608     1  56.91  1.5240     kept
## Sex                       0.1851  0.1851     1  58.06  3.1538     kept
## PovStat                   0.3942  0.3942     1  78.83  9.3020     kept
## Age:PovStat               1.2501  1.2501     1 118.90 11.4385     kept
## IPVstatus:Sex             1.1530  1.1530     1  56.91 10.4439     kept
##                           Pr(>F)
## Age:IPVstatus:Sex:PovStat 0.9152
## Age:IPVstatus:PovStat     0.6917
## Age:IPVstatus:Sex         0.6521
## Age:IPVstatus             0.7551
## IPVstatus:Sex:PovStat     0.5258
## Age:Sex:PovStat           0.3247
## Age:Sex                   0.9173
## Sex:PovStat               0.4289
## IPVstatus:PovStat         0.1975
## Age                       0.0016
## IPVstatus                 0.2221
## Sex                       0.0810
## PovStat                   0.0031
## Age:PovStat               0.0010
## IPVstatus:Sex             0.0020
## 
## Least squares means:
##                        IPVstatus  Sex PovStat Estimate Standard Error   DF
## IPVstatus  0                 1.0   NA      NA    4.458          0.108 59.2
## IPVstatus  1                 2.0   NA      NA    4.673          0.146 57.7
## Sex  Women                    NA  2.0      NA    4.409          0.122 57.0
## Sex  Men                      NA  1.0      NA    4.722          0.136 60.2
## PovStat  Above                NA   NA     1.0    4.463          0.105 57.9
## PovStat  Below                NA   NA     2.0    4.668          0.151 60.1
## IPVstatus:Sex  0 Women       1.0  2.0      NA    4.584          0.142 57.2
## IPVstatus:Sex  1 Women       2.0  2.0      NA    4.234          0.191 56.9
## IPVstatus:Sex  0 Men         1.0  1.0      NA    4.332          0.152 59.6
## IPVstatus:Sex  1 Men         2.0  1.0      NA    5.112          0.218 58.0
##                        t-value Lower CI Upper CI p-value
## IPVstatus  0              41.5     4.24     4.67  <2e-16
## IPVstatus  1              32.0     4.38     4.97  <2e-16
## Sex  Women                36.1     4.16     4.65  <2e-16
## Sex  Men                  34.8     4.45     4.99  <2e-16
## PovStat  Above            42.5     4.25     4.67  <2e-16
## PovStat  Below            30.9     4.37     4.97  <2e-16
## IPVstatus:Sex  0 Women    32.4     4.30     4.87  <2e-16
## IPVstatus:Sex  1 Women    22.1     3.85     4.62  <2e-16
## IPVstatus:Sex  0 Men      28.4     4.03     4.64  <2e-16
## IPVstatus:Sex  1 Men      23.5     4.68     5.55  <2e-16
## 
##  Differences of LSMEANS:
##                                 Estimate Standard Error   DF t-value
## IPVstatus 0-1                       -0.2         0.1739 56.9   -1.23
## Sex Women-Men                       -0.3         0.1764 58.1   -1.78
## PovStat Above-Below                 -0.2         0.1802 59.4   -1.13
## IPVstatus:Sex  0 Women- 1 Women      0.4         0.2322 57.0    1.51
## IPVstatus:Sex  0 Women- 0 Men        0.3         0.2010 57.7    1.25
## IPVstatus:Sex  0 Women- 1 Men       -0.5         0.2573 57.3   -2.05
## IPVstatus:Sex  1 Women- 0 Men       -0.1         0.2377 57.7   -0.41
## IPVstatus:Sex  1 Women- 1 Men       -0.9         0.2879 57.4   -3.05
## IPVstatus:Sex  0 Men- 1 Men         -0.8         0.2601 56.8   -3.00
##                                 Lower CI Upper CI p-value
## IPVstatus 0-1                     -0.563   0.1336   0.222
## Sex Women-Men                     -0.666   0.0398   0.081
## PovStat Above-Below               -0.565   0.1562   0.262
## IPVstatus:Sex  0 Women- 1 Women   -0.115   0.8150   0.137
## IPVstatus:Sex  0 Women- 0 Men     -0.151   0.6539   0.216
## IPVstatus:Sex  0 Women- 1 Men     -1.043  -0.0127   0.045
## IPVstatus:Sex  1 Women- 0 Men     -0.574   0.3773   0.680
## IPVstatus:Sex  1 Women- 1 Men     -1.454  -0.3015   0.004
## IPVstatus:Sex  0 Men- 1 Men       -1.300  -0.2585   0.004
## 
## Final model:
## lme4::lmer(formula = logTrailsB ~ Age + IPVstatus + Sex + PovStat + 
##     (1 | HNDid) + Age:PovStat + IPVstatus:Sex, data = IPVandCognitionDataSet2, 
##     REML = reml, contrasts = l)

Re-run the suggested final Model 1

(mm1 = lmer(logTrailsB ~ Age + IPVstatus + Sex + PovStat + (Age | HNDid) + (1 | 
    subclass) + Age:PovStat + IPVstatus:Sex, data = IPVandCognitionDataSet2))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: logTrailsB ~ Age + IPVstatus + Sex + PovStat + (Age | HNDid) +      (1 | subclass) + Age:PovStat + IPVstatus:Sex 
##    Data: IPVandCognitionDataSet2 
## REML criterion at convergence: 215.7 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 7.16e-01     
##           Age         1.38e-02 1.00
##  subclass (Intercept) 2.22e-06     
##  Residual             3.12e-01     
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## Fixed Effects:
##       (Intercept)                Age         IPVstatus1  
##            4.4710            -0.0031            -0.3839  
##            SexMen       PovStatBelow   Age:PovStatBelow  
##           -0.2869             0.6882             0.0663  
## IPVstatus1:SexMen  
##            1.2236

summary(mm1)
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: logTrailsB ~ Age + IPVstatus + Sex + PovStat + (Age | HNDid) +      (1 | subclass) + Age:PovStat + IPVstatus:Sex 
##    Data: IPVandCognitionDataSet2 
## 
## REML criterion at convergence: 215.7 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  HNDid    (Intercept) 5.12e-01 7.16e-01     
##           Age         1.91e-04 1.38e-02 1.00
##  subclass (Intercept) 4.92e-12 2.22e-06     
##  Residual             9.76e-02 3.12e-01     
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## 
## Fixed effects:
##                   Estimate Std. Error       df t value Pr(>|t|)
## (Intercept)         4.4710     0.1911  63.9000   23.40  < 2e-16
## Age                -0.0031     0.0114 106.7000   -0.27  0.78641
## IPVstatus1         -0.3839     0.2275  58.6000   -1.69  0.09691
## SexMen             -0.2869     0.1978  59.7000   -1.45  0.15217
## PovStatBelow        0.6882     0.2430  34.8000    2.83  0.00764
## Age:PovStatBelow    0.0663     0.0188  90.9000    3.52  0.00068
## IPVstatus1:SexMen   1.2236     0.3466  59.4000    3.53  0.00081
## 
## Correlation of Fixed Effects:
##             (Intr) Age    IPVst1 SexMen PvSttB Ag:PSB
## Age          0.662                                   
## IPVstatus1  -0.468 -0.083                            
## SexMen      -0.500 -0.019  0.394                     
## PovStatBelw -0.506 -0.501  0.057 -0.018              
## Ag:PvSttBlw -0.340 -0.606  0.022 -0.114  0.675       
## IPVstts1:SM  0.331  0.055 -0.661 -0.569 -0.085  0.002

plot(st)

plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1


plot(mm1)

plot of chunk unnamed-chunk-1

logTrailsB Regression Model 2 (with CES)

load("~/Desktop/Megan/Research/IPV and Cognition Paper/IPV R Output/IPVandCognitionDataSet2.rda")

library(lme4)
library(lmerTest)

(mm2 = lmer(logTrailsB ~ (Age + IPVstatus + Sex + PovStat + CES1)^5 + (Age | 
    HNDid) + (1 | subclass), data = IPVandCognitionDataSet2))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: logTrailsB ~ (Age + IPVstatus + Sex + PovStat + CES1)^5 + (Age |      HNDid) + (1 | subclass) 
##    Data: IPVandCognitionDataSet2 
## REML criterion at convergence: 245.8 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 8.02e-01     
##           Age         2.74e-02 0.90
##  subclass (Intercept) 4.01e-05     
##  Residual             3.15e-01     
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## Fixed Effects:
##                              (Intercept)  
##                                  4.20513  
##                                      Age  
##                                 -0.00549  
##                               IPVstatus1  
##                                  0.11789  
##                                   SexMen  
##                                 -0.43669  
##                             PovStatBelow  
##                                  1.83358  
##                                    CES11  
##                                  0.57292  
##                           Age:IPVstatus1  
##                                  0.01859  
##                               Age:SexMen  
##                                 -0.01940  
##                         Age:PovStatBelow  
##                                  0.11746  
##                                Age:CES11  
##                                  0.01171  
##                        IPVstatus1:SexMen  
##                                  2.35395  
##                  IPVstatus1:PovStatBelow  
##                                 -1.72588  
##                         IPVstatus1:CES11  
##                                 -0.69433  
##                      SexMen:PovStatBelow  
##                                 -0.53289  
##                             SexMen:CES11  
##                                  0.78222  
##                       PovStatBelow:CES11  
##                                 -2.20878  
##                    Age:IPVstatus1:SexMen  
##                                  0.00630  
##              Age:IPVstatus1:PovStatBelow  
##                                 -0.09658  
##                     Age:IPVstatus1:CES11  
##                                 -0.02100  
##                  Age:SexMen:PovStatBelow  
##                                 -0.03469  
##                         Age:SexMen:CES11  
##                                  0.07643  
##                   Age:PovStatBelow:CES11  
##                                 -0.09979  
##           IPVstatus1:SexMen:PovStatBelow  
##                                 -0.14772  
##                  IPVstatus1:SexMen:CES11  
##                                 -1.87770  
##            IPVstatus1:PovStatBelow:CES11  
##                                  2.54610  
##                SexMen:PovStatBelow:CES11  
##                                  1.00493  
##       Age:IPVstatus1:SexMen:PovStatBelow  
##                                  0.08011  
##              Age:IPVstatus1:SexMen:CES11  
##                                 -0.04652  
##        Age:IPVstatus1:PovStatBelow:CES11  
##                                  0.16165  
##            Age:SexMen:PovStatBelow:CES11  
##                                  0.01715  
##     IPVstatus1:SexMen:PovStatBelow:CES11  
##                                 -0.61976  
## Age:IPVstatus1:SexMen:PovStatBelow:CES11  
##                                 -0.04524

(st = step(mm2))
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## 
## Random effects:
##                Chi.sq Chi.DF elim.num p.value
## (1 | subclass)   0.00      1        1  1.0000
## (Age | HNDid)    3.17      1     kept  0.0752
## 
## Fixed effects:
##                                Sum Sq Mean Sq NumDF DenDF F.value elim.num
## Age:IPVstatus:Sex:PovStat:CES1 0.0038  0.0038     1 55.39  0.0386        1
## Age:Sex:PovStat:CES1           0.0004  0.0004     1 48.29  0.0020        2
## IPVstatus:Sex:PovStat:CES1     0.0004  0.0004     1 60.41  0.0072        3
## Age:IPVstatus:Sex:PovStat      0.0264  0.0264     1 49.48  0.2946        4
## Age:Sex:PovStat                0.0357  0.0357     1 44.92  0.0815        5
## Age:IPVstatus:Sex:CES1         0.0022  0.0022     1 52.70  0.4610        6
## Age:IPVstatus:Sex              0.0099  0.0099     1 74.24  0.0001        7
## Sex:PovStat:CES1               0.0668  0.0668     1 62.22  1.0410        8
## Age:IPVstatus:PovStat:CES1     0.1623  0.1623     1 81.92  1.0657        9
## Age:IPVstatus:CES1             0.0307  0.0307     1 82.44  0.0560       10
## Age:IPVstatus:PovStat          0.0424  0.0424     1 83.32  0.2762       11
## Age:IPVstatus                  0.0012  0.0012     1 86.70  0.0458       12
## IPVstatus:Sex:PovStat          0.0518  0.0518     1 52.79  0.7804       13
## Sex:PovStat                    0.0004  0.0004     1 61.91  0.1953       14
## Age:PovStat:CES1               0.1684  0.1684     1 77.59  1.6957       15
## IPVstatus:PovStat:CES1         0.0788  0.0788     1 51.13  1.7431       16
## IPVstatus:Sex:CES1             0.1515  0.1515     1 51.04  2.0764       17
## IPVstatus:PovStat              0.2337  0.2337     1 53.02  2.0488       18
## IPVstatus:CES1                 0.3410  0.3410     1 54.59  2.4988       19
## Age:Sex:CES1                   0.3422  0.3422     1 94.26  3.7995       20
## Age:Sex                        0.0010  0.0010     1 31.47  0.0053       21
## Sex:CES1                       0.0337  0.0337     1 55.53  0.0091       22
## Age:CES1                       0.0454  0.0454     1 92.56  0.2974       23
## PovStat:CES1                   0.2080  0.2080     1 56.65  3.2383       24
## CES1                           0.0177  0.0177     1 57.37  0.0000       25
## Age                            0.3997  0.3997     1 86.04 10.1621     kept
## IPVstatus                      0.0608  0.0608     1 59.00  1.7491     kept
## Sex                            0.1204  0.1204     1 59.36  3.4989     kept
## PovStat                        0.0440  0.0440     1 34.76  8.0204     kept
## Age:PovStat                    1.0834  1.0834     1 90.86 12.3735     kept
## IPVstatus:Sex                  1.2837  1.2837     1 59.41 12.4610     kept
##                                Pr(>F)
## Age:IPVstatus:Sex:PovStat:CES1 0.8451
## Age:Sex:PovStat:CES1           0.9648
## IPVstatus:Sex:PovStat:CES1     0.9328
## Age:IPVstatus:Sex:PovStat      0.5897
## Age:Sex:PovStat                0.7765
## Age:IPVstatus:Sex:CES1         0.5001
## Age:IPVstatus:Sex              0.9913
## Sex:PovStat:CES1               0.3116
## Age:IPVstatus:PovStat:CES1     0.3050
## Age:IPVstatus:CES1             0.8136
## Age:IPVstatus:PovStat          0.6006
## Age:IPVstatus                  0.8311
## IPVstatus:Sex:PovStat          0.3810
## Sex:PovStat                    0.6601
## Age:PovStat:CES1               0.1967
## IPVstatus:PovStat:CES1         0.1926
## IPVstatus:Sex:CES1             0.1557
## IPVstatus:PovStat              0.1582
## IPVstatus:CES1                 0.1197
## Age:Sex:CES1                   0.0542
## Age:Sex                        0.9427
## Sex:CES1                       0.9242
## Age:CES1                       0.5868
## PovStat:CES1                   0.0773
## CES1                           0.9981
## Age                            0.0020
## IPVstatus                      0.1911
## Sex                            0.0663
## PovStat                        0.0076
## Age:PovStat                    0.0007
## IPVstatus:Sex                  0.0008
## 
## Least squares means:
##                        IPVstatus  Sex PovStat Estimate Standard Error   DF
## IPVstatus  0                 1.0   NA      NA    4.453          0.108 59.2
## IPVstatus  1                 2.0   NA      NA    4.681          0.146 59.4
## Sex  Women                    NA  2.0      NA    4.405          0.121 58.5
## Sex  Men                      NA  1.0      NA    4.730          0.135 61.4
## PovStat  Above                NA   NA     1.0    4.464          0.108 55.6
## PovStat  Below                NA   NA     2.0    4.671          0.151 57.9
## IPVstatus:Sex  0 Women       1.0  2.0      NA    4.597          0.139 59.4
## IPVstatus:Sex  1 Women       2.0  2.0      NA    4.213          0.190 58.9
## IPVstatus:Sex  0 Men         1.0  1.0      NA    4.310          0.153 61.3
## IPVstatus:Sex  1 Men         2.0  1.0      NA    5.150          0.217 59.9
##                        t-value Lower CI Upper CI p-value
## IPVstatus  0              41.4     4.24     4.67  <2e-16
## IPVstatus  1              32.2     4.39     4.97  <2e-16
## Sex  Women                36.4     4.16     4.65  <2e-16
## Sex  Men                  35.0     4.46     5.00  <2e-16
## PovStat  Above            41.5     4.25     4.68  <2e-16
## PovStat  Below            30.9     4.37     4.97  <2e-16
## IPVstatus:Sex  0 Women    33.1     4.32     4.87  <2e-16
## IPVstatus:Sex  1 Women    22.2     3.83     4.59  <2e-16
## IPVstatus:Sex  0 Men      28.1     4.00     4.62  <2e-16
## IPVstatus:Sex  1 Men      23.8     4.72     5.58  <2e-16
## 
##  Differences of LSMEANS:
##                                 Estimate Standard Error   DF t-value
## IPVstatus 0-1                       -0.2         0.1723 59.0   -1.32
## Sex Women-Men                       -0.3         0.1737 59.4   -1.87
## PovStat Above-Below                 -0.2         0.1812 57.0   -1.14
## IPVstatus:Sex  0 Women- 1 Women      0.4         0.2275 58.6    1.69
## IPVstatus:Sex  0 Women- 0 Men        0.3         0.1978 59.7    1.45
## IPVstatus:Sex  0 Women- 1 Men       -0.6         0.2535 57.9   -2.18
## IPVstatus:Sex  1 Women- 0 Men       -0.1         0.2355 60.2   -0.41
## IPVstatus:Sex  1 Women- 1 Men       -0.9         0.2851 59.3   -3.29
## IPVstatus:Sex  0 Men- 1 Men         -0.8         0.2602 59.5   -3.23
##                                 Lower CI Upper CI p-value
## IPVstatus 0-1                    -0.5728   0.1169   0.191
## Sex Women-Men                    -0.6723   0.0226   0.066
## PovStat Above-Below              -0.5695   0.1563   0.259
## IPVstatus:Sex  0 Women- 1 Women  -0.0715   0.8392   0.097
## IPVstatus:Sex  0 Women- 0 Men    -0.1088   0.6827   0.152
## IPVstatus:Sex  0 Women- 1 Men    -1.0602  -0.0453   0.033
## IPVstatus:Sex  1 Women- 0 Men    -0.5680   0.3741   0.682
## IPVstatus:Sex  1 Women- 1 Men    -1.5070  -0.3663   0.002
## IPVstatus:Sex  0 Men- 1 Men      -1.3603  -0.3192   0.002
## 
## Final model:
## lme4::lmer(formula = logTrailsB ~ Age + IPVstatus + Sex + PovStat + 
##     (Age | HNDid) + Age:PovStat + IPVstatus:Sex, data = IPVandCognitionDataSet2, 
##     REML = reml, contrasts = l)

Re-run the suggested final Model 2

(mm2 = lmer(logTrailsB ~ Age + IPVstatus + Sex + PovStat + (Age | HNDid) + (1 | 
    subclass) + Age:PovStat + IPVstatus:Sex, data = IPVandCognitionDataSet2))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: logTrailsB ~ Age + IPVstatus + Sex + PovStat + (Age | HNDid) +      (1 | subclass) + Age:PovStat + IPVstatus:Sex 
##    Data: IPVandCognitionDataSet2 
## REML criterion at convergence: 215.7 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 7.16e-01     
##           Age         1.38e-02 1.00
##  subclass (Intercept) 2.22e-06     
##  Residual             3.12e-01     
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## Fixed Effects:
##       (Intercept)                Age         IPVstatus1  
##            4.4710            -0.0031            -0.3839  
##            SexMen       PovStatBelow   Age:PovStatBelow  
##           -0.2869             0.6882             0.0663  
## IPVstatus1:SexMen  
##            1.2236

summary(mm2)
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: logTrailsB ~ Age + IPVstatus + Sex + PovStat + (Age | HNDid) +      (1 | subclass) + Age:PovStat + IPVstatus:Sex 
##    Data: IPVandCognitionDataSet2 
## 
## REML criterion at convergence: 215.7 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  HNDid    (Intercept) 5.12e-01 7.16e-01     
##           Age         1.91e-04 1.38e-02 1.00
##  subclass (Intercept) 4.92e-12 2.22e-06     
##  Residual             9.76e-02 3.12e-01     
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## 
## Fixed effects:
##                   Estimate Std. Error       df t value Pr(>|t|)
## (Intercept)         4.4710     0.1911  63.9000   23.40  < 2e-16
## Age                -0.0031     0.0114 106.7000   -0.27  0.78641
## IPVstatus1         -0.3839     0.2275  58.6000   -1.69  0.09691
## SexMen             -0.2869     0.1978  59.7000   -1.45  0.15217
## PovStatBelow        0.6882     0.2430  34.8000    2.83  0.00764
## Age:PovStatBelow    0.0663     0.0188  90.9000    3.52  0.00068
## IPVstatus1:SexMen   1.2236     0.3466  59.4000    3.53  0.00081
## 
## Correlation of Fixed Effects:
##             (Intr) Age    IPVst1 SexMen PvSttB Ag:PSB
## Age          0.662                                   
## IPVstatus1  -0.468 -0.083                            
## SexMen      -0.500 -0.019  0.394                     
## PovStatBelw -0.506 -0.501  0.057 -0.018              
## Ag:PvSttBlw -0.340 -0.606  0.022 -0.114  0.675       
## IPVstts1:SM  0.331  0.055 -0.661 -0.569 -0.085  0.002

plot(st)

plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3


plot(mm2)

plot of chunk unnamed-chunk-3