Epidemiology 201: Homework 1

## Settings for RMarkdown http://yihui.name/knitr/options#chunk_options
opts_chunk$set(comment = "", warning = FALSE, message = FALSE, tidy = FALSE, 
    echo = TRUE, fig.width = 5, fig.height = 5)
options(width = 116, scipen = 10)

setwd("~/statistics/epi201/")

Question 1

a. What was the prevalence of HIV diagnosis on January 1st?

1300 /11000
[1] 0.1182

b. What was the prevalence of HIV diagnosis on October 1st?

(1300 + 21 + 37 - 300) / (11000 - 175 - 300 - 7)
[1] 0.1006

c. What was the 5-month risk (incidence proportion) of HIV diagnosis from January 1st to May 31st?
Number of new (incident cases) / at-risk population (non disased at Jan 1st)

(21 + 37) / (11000 - 1300)
[1] 0.005979

d. What was the incidence rate of HIV diagnosis during the entire year?
At risk population at the beginning is 11000 - 1300.
Among them, 21 newly infected individuals contributed 1 month each to total person-time before being infected.
Among them, 37 newly infected individuals contributed 4 months each to total person-time before being infected.
Among them, 175 healthy individuals contributed 5 months each to total person-time before moving away.
Among them, 7 healthy individuals contributed 8 months each to total person time before dying in traffic accidents.
(500 - 57) healthy individuals joined in November, and contributed 2 months each.

The other individuals (11000 - 1300 - 21 - 37 - 175 - 7) = 9460 contributed 12 months each.

During this particular year, (21 + 37) individuals were newly infected.

(21 + 37) / (21 * 1 + 37 * 4 + 175 * 5 + 7 * 8 + (500 - 57) * 2 + 9460 * 12)
[1] 0.0005021

per person-month.

Question 2

a. At the start of the match, which player had the higher expected risk of losing?
Federer. Higher odds means less likely to win, more likely to lose, thus higher expected risk of losing.

b. At what approximate times in the match were the expected risks of losing equal for both players?
9:28, 9:44, 10:18, 11:02, 11:30, 11:40

c. At 10:04am, what was the approximate risk of losing for Nadal? And for Federer?
10 to 1 odds at this point with Nadal having a higher probability of losing.
The probability is 1/11 = 0.0909 for Federer, and 10/11 = 0.9091 for Nadal.

d. At 10:29am, what was the approximate risk of losing for Nadal? And for Federer?
5 to 1 odds at this point with Federer having a higher probability of losing.
The probability is 1/6 = 0.1667 for Nadal, and 5/6 = 0.8333 for Federer.

e. Plot the approximate risk of losing over time for both players (Note: this plot will be necessarily approximate because the figure does not allow for great accuracy.)
Omitted.

Question 2

q2 <- read.table(header = TRUE, text = "
'Age range x' 'Survivors at start of x' 'Deaths during x' 'Person-years during x' 'Person years after start of x'
'<1'    100000  590 99469   8044881
'1-4'   99410   96  397408  7945412
'5-9'   99314   64  496408  7548004
'10-14' 99249   70  496072  7051596
'15-19' 99180   180 495448  6555524
'20-24' 98999   233 494415  6060076
'25-29' 98766   262 493177  5565661
'30-34' 98504   355 491633  5072485
'35-39' 98149   526 489430  4580852
'40-44' 97623   838 486020  4091421
'45-49' 96785   1259    480778  3605401
'50-54' 95526   1790    473158  3124623
'55-59' 93737   2541    462332  2651465
'60-64' 91196   3932    446151  2189134
'65-69' 87264   5706    422056  1742983
'70-74' 81558   8280    387092  1320926
'75-79' 73279   11535   337556  933834
'80-84' 61744   15508   269948  596279
'85-89' 46235   17883   186470  326331
'90-94' 28352   15259   95984   139861
'95-99' 13093   8942    34170   43877
'100+'  4152    4152    9707    9707")

names(q2) <- c("age.range.x", "n.at.risk", "deaths.during.x", "PY.during.x", "PY.thereafter")

q2
   age.range.x n.at.risk deaths.during.x PY.during.x PY.thereafter
1           <1    100000             590       99469       8044881
2          1-4     99410              96      397408       7945412
3          5-9     99314              64      496408       7548004
4        10-14     99249              70      496072       7051596
5        15-19     99180             180      495448       6555524
6        20-24     98999             233      494415       6060076
7        25-29     98766             262      493177       5565661
8        30-34     98504             355      491633       5072485
9        35-39     98149             526      489430       4580852
10       40-44     97623             838      486020       4091421
11       45-49     96785            1259      480778       3605401
12       50-54     95526            1790      473158       3124623
13       55-59     93737            2541      462332       2651465
14       60-64     91196            3932      446151       2189134
15       65-69     87264            5706      422056       1742983
16       70-74     81558            8280      387092       1320926
17       75-79     73279           11535      337556        933834
18       80-84     61744           15508      269948        596279
19       85-89     46235           17883      186470        326331
20       90-94     28352           15259       95984        139861
21       95-99     13093            8942       34170         43877
22        100+      4152            4152        9707          9707

a.Incidence proportion during each age interval

q2 <- within(q2, {
        risk <- deaths.during.x / n.at.risk
})

b.Incidence rate during each age interval

q2 <- within(q2, {
        rate <- deaths.during.x / PY.during.x
})

c.Incidence proportion between age 0 and the end of each age interval

q2 <- within(q2, {
        risk.from.0.to.x <- cumsum(deaths.during.x) / 100000
})

d.Life expectancy at the start of each age interval (i.e., average number of years remaining to live)

q2 <- within(q2, {
        life.exp <- PY.thereafter / n.at.risk
})
q2
   age.range.x n.at.risk deaths.during.x PY.during.x PY.thereafter      risk      rate risk.from.0.to.x life.exp
1           <1    100000             590       99469       8044881 0.0059000 0.0059315          0.00590   80.449
2          1-4     99410              96      397408       7945412 0.0009657 0.0002416          0.00686   79.926
3          5-9     99314              64      496408       7548004 0.0006444 0.0001289          0.00750   76.001
4        10-14     99249              70      496072       7051596 0.0007053 0.0001411          0.00820   71.050
5        15-19     99180             180      495448       6555524 0.0018149 0.0003633          0.01000   66.097
6        20-24     98999             233      494415       6060076 0.0023536 0.0004713          0.01233   61.214
7        25-29     98766             262      493177       5565661 0.0026527 0.0005312          0.01495   56.352
8        30-34     98504             355      491633       5072485 0.0036039 0.0007221          0.01850   51.495
9        35-39     98149             526      489430       4580852 0.0053592 0.0010747          0.02376   46.672
10       40-44     97623             838      486020       4091421 0.0085840 0.0017242          0.03214   41.910
11       45-49     96785            1259      480778       3605401 0.0130082 0.0026187          0.04473   37.252
12       50-54     95526            1790      473158       3124623 0.0187384 0.0037831          0.06263   32.710
13       55-59     93737            2541      462332       2651465 0.0271078 0.0054961          0.08804   28.286
14       60-64     91196            3932      446151       2189134 0.0431159 0.0088132          0.12736   24.005
15       65-69     87264            5706      422056       1742983 0.0653878 0.0135195          0.18442   19.974
16       70-74     81558            8280      387092       1320926 0.1015228 0.0213903          0.26722   16.196
17       75-79     73279           11535      337556        933834 0.1574121 0.0341721          0.38257   12.744
18       80-84     61744           15508      269948        596279 0.2511661 0.0574481          0.53765    9.657
19       85-89     46235           17883      186470        326331 0.3867849 0.0959028          0.71648    7.058
20       90-94     28352           15259       95984        139861 0.5381984 0.1589744          0.86907    4.933
21       95-99     13093            8942       34170         43877 0.6829604 0.2616915          0.95849    3.351
22        100+      4152            4152        9707          9707 1.0000000 0.4277326          1.00001    2.338

question 4

Omitted

question 5

Omitted