*Se omiten las tildes y caracteres para evitar errores de edicion en todo el documento.
set.seed(2016)
VAR1 <- rnorm(100,12,.5)
hist(VAR1, prob=T, col=32, main="Histograma", breaks=15)
lines(density(VAR1))
set.seed(6)
VAR2 <- rnorm(100,12,.5)
boxplot(VAR2)
boxplot(VAR2, horizontal=T)
ward<-read.table("ward.csv", header=T, sep=",")
boxplot(EGGS~ZONE, data=ward, ylab="Number of eggs percapsule", xlab="Zone")
furness<-read.table("furness.csv", header=T, sep=",")
boxplot(METRATE~SEX, data= furness, ylab="metabolicrate", xlab="Sex")
limpets <-read.table("limpets.csv", header=T, sep=",")
boxplot(O2~SEAWATER*SPECIES, limpets, cex.axis=.7)
christ <- read.table("christ.csv", header=T, sep=",")
#Elabora una figura de la distribucion de los datos de la variable "x" y "y"
plot(CWD.DENS ~ RIP.DENS, data=christ)
#dibuja la pendiente de los datos
abline(lm(CWD.DENS ~ RIP.DENS,data=christ))
#permite dibujar y calcular la media de los datos
abline(h=mean(christ$CWD.DENS),lty=2)
#Permite hacer cortes de datos segun la cantidad requerida
area <- cut(christ$AREA,2,lab=c("small", "large"))
area
## [1] small small small small small large large small large small small
## [12] small small large small small
## Levels: small large
#Creamos un vector con un subset de datos de la regresion con los valores que categorizamos
lm.small <- lm(CWD.DENS ~ RIP.DENS, data=christ, subset=area=="small")
lm.large <- lm(CWD.DENS ~ RIP.DENS, data=christ,subset=area=="large")
plot(CWD.DENS ~ RIP.DENS, data=christ)
#agregamos las lineas de la pendiente para "lm.small"
lines(christ$RIP.DENS[area=="small"], predict(lm.small), lty=1)
#agregamos las lineas de la pendiente para "lm.large"
lines(christ$RIP.DENS[area=="large"], predict(lm.large), lty=2)
#agregamos una legenda
legend("bottomright",title="Area",legend=c("small","large"), lty=c(1,2))
library(car)
#genera scatterplot
scatterplot(CWD.DENS ~ RIP.DENS, data=christ)
library(car)
#figura exploratoria
scatterplot.matrix(~CWD.DENS + RIP.DENS + CABIN + AREA,data=christ, diag="boxplot")
## Warning: 'scatterplot.matrix' is deprecated.
## Use 'scatterplotMatrix' instead.
## See help("Deprecated") and help("car-deprecated").
library(corrplot)
## Warning: package 'corrplot' was built under R version 3.2.3
christ <- read.table("christ.csv", header=T, sep=",")
#Para trabajar esto los datos deben estar ordenadas en Data frame
attach(christ)
a<-data.frame(AREA, RIP.DENS,RIP.BASA, CWD.DENS,CABIN)
Corr <- cor(a)
Corr
## AREA RIP.DENS RIP.BASA CWD.DENS CABIN
## AREA 1.0000000 -0.0305865 0.4518667 -0.2748671 -0.0259550
## RIP.DENS -0.0305865 1.0000000 0.3950002 0.8740920 -0.6126756
## RIP.BASA 0.4518667 0.3950002 1.0000000 0.1772555 -0.2625449
## CWD.DENS -0.2748671 0.8740920 0.1772555 1.0000000 -0.7124502
## CABIN -0.0259550 -0.6126756 -0.2625449 -0.7124502 1.0000000
corrplot(Corr, method = "ellipse")
#Utilice la base de datos de R "ChickWeight"
head(ChickWeight)
## Grouped Data: weight ~ Time | Chick
## weight Time Chick Diet
## 1 42 0 1 1
## 2 51 2 1 1
## 3 59 4 1 1
## 4 64 6 1 1
## 5 76 8 1 1
## 6 93 10 1 1
#Contraste los supuestos parametricos, para los tratamientos de Dieta y weight
#Forma grafica
plot(aov(weight~Diet, data=ChickWeight))
#Calculo de valores
reg<-lm(weight~Diet, data=ChickWeight)
residuos<-residuals(reg) #Estima los residuos
#Normalidad
shapiro.test(residuos)
##
## Shapiro-Wilk normality test
##
## data: residuos
## W = 0.94065, p-value = 2.014e-14
## Bartlett Test de Homogeneidad de Varianzas
bartlett.test(weight~Diet, data=ChickWeight)
##
## Bartlett test of homogeneity of variances
##
## data: weight by Diet
## Bartlett's K-squared = 29.489, df = 3, p-value = 1.768e-06
library (outliers)
cochran.test(weight~Diet, data=ChickWeight)
##
## Cochran test for outlying variance
##
## data: weight ~ Diet
## C = 0.3642, df = 144.5, k = 4.0, p-value = 6.466e-05
## alternative hypothesis: Group 3 has outlying variance
## sample estimates:
## 1 2 3 4
## 3209.965 5127.633 7489.476 4737.392
head(Orange)
## Grouped Data: circumference ~ age | Tree
## Tree age circumference
## 1 1 118 30
## 2 1 484 58
## 3 1 664 87
## 4 1 1004 115
## 5 1 1231 120
## 6 1 1372 142
plot(aov(circumference~Tree, data=Orange))
exp <- read.table("supuestosaov.csv", header=T, sep=";")
exp
## Proteina Metodo var1
## 1 Ubi AVG 0.467
## 2 Ubi GOR 0.645
## 3 Ubi PHD 0.868
## 4 Deo AVG 0.472
## 5 Deo GOR 0.844
## 6 Deo PHD 0.879
## 7 Rab AVG 0.405
## 8 Rab GOR 0.604
## 9 Rab PHD 0.787
## 10 Alb AVG 0.449
## 11 Alb GOR 0.772
## 12 Alb PHD 0.780
attach(exp)
is.factor(Proteina)
## [1] TRUE
par(mfrow=c(2,2))
plot(aov(var1~Metodo,data=exp))