Load ’em up.

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(tidyr)
## Warning: package 'tidyr' was built under R version 3.2.3
library(cowplot)
## Warning: package 'cowplot' was built under R version 3.2.4
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 3.2.4
## 
## Attaching package: 'cowplot'
## The following object is masked from 'package:ggplot2':
## 
##     ggsave
library(lme4)
## Warning: package 'lme4' was built under R version 3.2.3
## Loading required package: Matrix
## Warning: package 'Matrix' was built under R version 3.2.4
## 
## Attaching package: 'Matrix'
## The following object is masked from 'package:tidyr':
## 
##     expand
library(MCMCglmm)
## Warning: package 'MCMCglmm' was built under R version 3.2.3
## Loading required package: coda
## Loading required package: ape
## Warning: package 'ape' was built under R version 3.2.3
cbPalette <- c("#999999", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7")
setwd("~/Downloads")

Get Data

Get cell size data, visually inspect

#get data on cell size, calculate means, make new table with just means
cellmeasures <- read.csv("fixingmeasures-updated.csv",header=TRUE) 
cellmeans<-mutate(cellmeasures,mean_size=rowMeans(select(cellmeasures,6:185),na.rm=TRUE)) %>%
  select(c(1:5,mean_size))

Cell size differs between leaves and between adjacent, mid.

ggplot(cellmeans,aes(y=mean_size,x=interaction(pos,leaf),fill=as.factor(leaf)))+
  geom_boxplot()+ 
  scale_fill_manual("leaf",values=cbPalette[1:2],  labels=c("3","4"))

#show ANOVA
summary(lmer(data=cellmeans,mean_size~leaf+pos+leaf:pos+(1|pop)))
## Linear mixed model fit by REML ['lmerMod']
## Formula: mean_size ~ leaf + pos + leaf:pos + (1 | pop)
##    Data: cellmeans
## 
## REML criterion at convergence: 7297.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.3468 -0.6223  0.0061  0.5936  3.2958 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  pop      (Intercept)  93.62    9.676  
##  Residual             522.22   22.852  
## Number of obs: 800, groups:  pop, 19
## 
## Fixed effects:
##                Estimate Std. Error t value
## (Intercept)     198.258      8.391  23.626
## leaf             -9.341      2.285  -4.088
## posmiddle        33.401     11.426   2.923
## leaf:posmiddle   -1.373      3.232  -0.425
## 
## Correlation of Fixed Effects:
##             (Intr) leaf   psmddl
## leaf        -0.953              
## posmiddle   -0.681  0.700       
## leaf:psmddl  0.674 -0.707 -0.990

Get growth rate data, merge with cell size data, calculate cell production

#get data on growth rates, using for now mean rate
cellget <- read.csv("CellProduction_All_crap.csv") %>% 
  filter(Ind != "NA") 
cellprod<-mutate(cellget,mid3=rowMeans(select(cellget,7:10),na.rm=T),mid4=rowMeans(select(cellget,11:14),na.rm=T)) %>%
  select(c(1:6,dailyavg3,dailyavg4)) %>%
  gather(leaf,growth,c(dailyavg3,dailyavg4)) %>% 
  mutate(leaf=substr(leaf,9,9))

#merge two datasets and get production
master<-merge(cellprod,cellmeans,by=c("fullid","leaf")) %>% mutate(cell_production=growth/mean_size) %>% select(leaf,Popsep,Pop,genomesize,growth,pos,mean_size,cell_production)

How’s the data look? Pretty normalish.

a=ggplot(data=master)+geom_histogram(aes(genomesize))
b=ggplot(data=master)+geom_histogram(aes(mean_size))
c=ggplot(data=master)+geom_histogram(aes(growth))
d=ggplot(data=master)+geom_histogram(aes(cell_production))
plot_grid(a,b,c,d)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Genome size correlates

Growth decreases with increasing genome size, probably not significant, but varies a lot within families!

a=ggplot(master,aes(y=growth,x=genomesize,color=Pop))+
  geom_point()+
  geom_smooth(method="lm",se=FALSE)+
  xlab("2C Genome Size")+
  ylab("Mean Leaf Elongation")+
  theme(axis.text=element_text(size=12),
        axis.title=element_text(size=18,face="bold")) 
b=ggplot(master,aes(y=growth,x=genomesize,color=leaf,linetype=pos))+
  geom_point()+
  geom_smooth(method="lm",se=FALSE)+
  xlab("2C Genome Size")+
  ylab("Mean Leaf Elongation")+
  theme(axis.text=element_text(size=12),
        axis.title=element_text(size=18,face="bold")) +  
  scale_color_manual("leaf",values=cbPalette[1:2])

plot_grid(a,b,nrow=2)

summary(lmer(data=master,growth~genomesize+leaf+pos+(1|Popsep:genomesize)+(1|Popsep)))
## Linear mixed model fit by REML ['lmerMod']
## Formula: growth ~ genomesize + leaf + pos + (1 | Popsep:genomesize) +  
##     (1 | Popsep)
##    Data: master
## 
## REML criterion at convergence: 2240.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9540 -0.5221 -0.0549  0.5367  3.6580 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  Popsep:genomesize (Intercept) 0.50168  0.7083  
##  Popsep            (Intercept) 0.09243  0.3040  
##  Residual                      0.74099  0.8608  
## Number of obs: 784, groups:  Popsep:genomesize, 160; Popsep, 51
## 
## Fixed effects:
##               Estimate Std. Error t value
## (Intercept)  5.974e+00  2.081e+00   2.871
## genomesize  -2.448e-01  3.478e-01  -0.704
## leaf4        1.275e+00  6.149e-02  20.735
## posmiddle   -3.263e-14  6.149e-02   0.000
## 
## Correlation of Fixed Effects:
##            (Intr) genmsz leaf4 
## genomesize -0.999              
## leaf4      -0.015  0.000       
## posmiddle  -0.015  0.000  0.000

Cell size decreases with increasing genome size, probably not significant.

ggplot(master,aes(y=mean_size,x=genomesize,color=leaf,linetype=pos))+
  geom_point()+
  geom_smooth(method="lm")+
  xlab("2C Genome Size")+
  ylab("Mean Size")+
  theme(axis.text=element_text(size=12),
        axis.title=element_text(size=18,face="bold"))+  
  scale_color_manual("leaf",values=cbPalette[1:2])

summary(lmer(data=master,mean_size~genomesize+leaf+pos+(1|Popsep:genomesize)+(1|Popsep)))
## Linear mixed model fit by REML ['lmerMod']
## Formula: mean_size ~ genomesize + leaf + pos + (1 | Popsep:genomesize) +  
##     (1 | Popsep)
##    Data: master
## 
## REML criterion at convergence: 7066.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9386 -0.5724 -0.0092  0.5262  3.2584 
## 
## Random effects:
##  Groups            Name        Variance Std.Dev.
##  Popsep:genomesize (Intercept) 168.61   12.985  
##  Popsep            (Intercept)  64.79    8.049  
##  Residual                      378.58   19.457  
## Number of obs: 784, groups:  Popsep:genomesize, 160; Popsep, 51
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  208.103     42.232   4.928
## genomesize    -6.083      7.054  -0.862
## leaf4         -9.894      1.390  -7.119
## posmiddle     28.702      1.390  20.652
## 
## Correlation of Fixed Effects:
##            (Intr) genmsz leaf4 
## genomesize -0.999              
## leaf4      -0.016  0.000       
## posmiddle  -0.016  0.000  0.000

No effect of genome size on cell production.

ggplot(master,aes(y=cell_production,x=genomesize,color=leaf,linetype=pos))+
  geom_point()+
  geom_smooth(method="lm")+
  xlab("2C Genome Size")+
  ylab("Cell Production")+
  theme(axis.text=element_text(size=12),
        axis.title=element_text(size=18,face="bold"))+
  scale_color_manual("leaf",values=cbPalette[1:2])

summary(lmer(data=master,cell_production~genomesize+leaf+pos+(1|Popsep:genomesize)+(1|Popsep)))
## Linear mixed model fit by REML ['lmerMod']
## Formula: 
## cell_production ~ genomesize + leaf + pos + (1 | Popsep:genomesize) +  
##     (1 | Popsep)
##    Data: master
## 
## REML criterion at convergence: -5631.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6867 -0.5390 -0.0246  0.4801  4.4324 
## 
## Random effects:
##  Groups            Name        Variance  Std.Dev.
##  Popsep:genomesize (Intercept) 1.947e-05 0.004413
##  Popsep            (Intercept) 5.802e-06 0.002409
##  Residual                      3.074e-05 0.005544
## Number of obs: 784, groups:  Popsep:genomesize, 160; Popsep, 51
## 
## Fixed effects:
##               Estimate Std. Error t value
## (Intercept)  0.0246327  0.0134659   1.829
## genomesize   0.0004104  0.0022496   0.182
## leaf4        0.0087092  0.0003960  21.991
## posmiddle   -0.0045016  0.0003960 -11.367
## 
## Correlation of Fixed Effects:
##            (Intr) genmsz leaf4 
## genomesize -0.999              
## leaf4      -0.015  0.000       
## posmiddle  -0.015  0.000  0.000