IPAC (Met) GA Models vs Modern Catalogues [Newton, Mann, Gaidos].
Introduction
After the modelling process from GA features, the outcome will be compared against catallogues from Gaidos, Mann and Newton.
Loading predictions from GA based models
Loading recent models
1 final-Gaidos2014-*.tsv contiene muchas columnas. En particular, la primera contiene el nombre de la estrella, la #34 contiene Fe/H y la #35 la temperatura efectiva.
2 final-Mann2015-*.tsv: la primera contiene el nombre de la estrella, la #11 contiene Fe/H y la #8 la temperatura efectiva.
3 final-Newton2014*.tsv: la primera contiene el nombre de la estrella y la #15 contiene Fe/H. En el fichero de IPAC hay dos estrellas que están repetidas: es porque tienen dos estimaciones.
Comparison Fe/H between sources
Gaidos
|
|
drmse
|
dmae
|
drmdse
|
dmade
|
|
RF_Inf
|
0.33
|
0.28
|
0.25
|
0.25
|
|
GB_Inf
|
0.34
|
0.29
|
0.25
|
0.25
|
|
SVR_Inf
|
4.50
|
4.05
|
4.25
|
4.25
|
|
NNR_Inf
|
2.25
|
2.11
|
2.06
|
2.06
|
|
KNN_Inf
|
0.80
|
0.60
|
0.47
|
0.47
|
|
MARS_Inf
|
1.48
|
1.22
|
1.13
|
1.13
|
|
PLS_Inf
|
1.33
|
1.22
|
1.24
|
1.24
|
|
Rule-Regression_Inf
|
1.48
|
1.40
|
1.47
|
1.47
|
|
RF_10
|
0.53
|
0.44
|
0.38
|
0.38
|
|
GB_10
|
0.58
|
0.46
|
0.41
|
0.41
|
|
SVR_10
|
0.40
|
0.31
|
0.25
|
0.25
|
|
NNR_10
|
0.56
|
0.49
|
0.49
|
0.49
|
|
KNN_10
|
0.38
|
0.29
|
0.23
|
0.23
|
|
MARS_10
|
0.60
|
0.50
|
0.45
|
0.45
|
|
PLS_10
|
0.71
|
0.65
|
0.63
|
0.63
|
|
Rule-Regression_10
|
0.43
|
0.33
|
0.27
|
0.27
|
|
RF_50
|
0.91
|
0.83
|
0.79
|
0.79
|
|
GB_50
|
0.99
|
0.91
|
0.99
|
0.99
|
|
SVR_50
|
0.64
|
0.51
|
0.42
|
0.42
|
|
NNR_50
|
0.77
|
0.55
|
0.46
|
0.46
|
|
KNN_50
|
1.05
|
0.92
|
0.86
|
0.86
|
|
MARS_50
|
1.06
|
0.85
|
0.70
|
0.70
|
|
PLS_50
|
0.72
|
0.61
|
0.55
|
0.55
|
|
Rule-Regression_50
|
0.55
|
0.44
|
0.37
|
0.37
|
|
Chi2_inf
|
0.63
|
0.52
|
0.47
|
0.47
|
|
Chi2_10
|
0.73
|
0.57
|
0.47
|
0.47
|
|
Chi2_50
|
0.69
|
0.53
|
0.45
|
0.45
|
|
ICA_inf
|
1.17
|
1.06
|
1.00
|
1.00
|
|
ICA_10
|
0.77
|
0.61
|
0.52
|
0.52
|
|
ICA_50
|
1.17
|
0.94
|
0.76
|
0.76
|
|
M_teo
|
0.14
|
0.11
|
0.09
|
0.08
|
Mann
|
|
drmse
|
dmae
|
drmdse
|
dmade
|
|
RF_Inf
|
0.30
|
0.25
|
0.22
|
0.22
|
|
GB_Inf
|
0.34
|
0.27
|
0.25
|
0.25
|
|
SVR_Inf
|
4.61
|
4.13
|
4.16
|
4.16
|
|
NNR_Inf
|
2.19
|
2.05
|
1.98
|
1.98
|
|
KNN_Inf
|
0.77
|
0.58
|
0.39
|
0.39
|
|
MARS_Inf
|
1.42
|
1.20
|
1.14
|
1.14
|
|
PLS_Inf
|
1.30
|
1.19
|
1.15
|
1.15
|
|
Rule-Regression_Inf
|
1.51
|
1.43
|
1.43
|
1.43
|
|
RF_10
|
0.49
|
0.42
|
0.37
|
0.37
|
|
GB_10
|
0.54
|
0.44
|
0.40
|
0.40
|
|
SVR_10
|
0.40
|
0.30
|
0.21
|
0.21
|
|
NNR_10
|
0.49
|
0.43
|
0.42
|
0.42
|
|
KNN_10
|
0.38
|
0.30
|
0.26
|
0.26
|
|
MARS_10
|
0.55
|
0.46
|
0.42
|
0.42
|
|
PLS_10
|
0.66
|
0.60
|
0.61
|
0.61
|
|
Rule-Regression_10
|
0.42
|
0.32
|
0.24
|
0.24
|
|
RF_50
|
0.90
|
0.81
|
0.79
|
0.79
|
|
GB_50
|
0.96
|
0.88
|
0.84
|
0.84
|
|
SVR_50
|
0.58
|
0.47
|
0.50
|
0.50
|
|
NNR_50
|
0.70
|
0.52
|
0.45
|
0.45
|
|
KNN_50
|
0.97
|
0.86
|
0.85
|
0.85
|
|
MARS_50
|
1.00
|
0.82
|
0.74
|
0.74
|
|
PLS_50
|
0.63
|
0.52
|
0.47
|
0.47
|
|
Rule-Regression_50
|
0.50
|
0.39
|
0.35
|
0.35
|
|
Chi2_inf
|
0.59
|
0.48
|
0.40
|
0.40
|
|
Chi2_10
|
0.77
|
0.62
|
0.62
|
0.62
|
|
Chi2_50
|
0.64
|
0.52
|
0.41
|
0.41
|
|
ICA_inf
|
1.14
|
0.99
|
0.87
|
0.87
|
|
ICA_10
|
0.76
|
0.56
|
0.37
|
0.37
|
|
ICA_50
|
1.20
|
0.93
|
0.73
|
0.73
|
|
M_teo
|
0.08
|
0.06
|
0.04
|
0.04
|
Newton
|
|
drmse
|
dmae
|
drmdse
|
dmade
|
|
RF_Inf
|
0.30
|
0.26
|
0.26
|
0.26
|
|
GB_Inf
|
0.35
|
0.29
|
0.28
|
0.28
|
|
SVR_Inf
|
3.05
|
2.55
|
2.18
|
2.18
|
|
NNR_Inf
|
2.08
|
1.93
|
2.05
|
2.05
|
|
KNN_Inf
|
0.50
|
0.41
|
0.36
|
0.36
|
|
MARS_Inf
|
1.00
|
0.71
|
0.56
|
0.56
|
|
PLS_Inf
|
1.27
|
1.18
|
1.31
|
1.31
|
|
Rule-Regression_Inf
|
1.25
|
1.20
|
1.21
|
1.21
|
|
RF_10
|
0.67
|
0.57
|
0.59
|
0.59
|
|
GB_10
|
0.80
|
0.68
|
0.66
|
0.66
|
|
SVR_10
|
0.62
|
0.50
|
0.44
|
0.44
|
|
NNR_10
|
0.68
|
0.61
|
0.65
|
0.65
|
|
KNN_10
|
0.51
|
0.42
|
0.44
|
0.44
|
|
MARS_10
|
0.87
|
0.76
|
0.74
|
0.74
|
|
PLS_10
|
0.82
|
0.75
|
0.79
|
0.79
|
|
Rule-Regression_10
|
0.68
|
0.58
|
0.59
|
0.59
|
|
RF_50
|
0.77
|
0.72
|
0.75
|
0.75
|
|
GB_50
|
1.00
|
0.94
|
0.99
|
0.99
|
|
SVR_50
|
0.79
|
0.70
|
0.78
|
0.78
|
|
NNR_50
|
0.80
|
0.69
|
0.73
|
0.73
|
|
KNN_50
|
1.32
|
1.17
|
1.29
|
1.29
|
|
MARS_50
|
0.96
|
0.87
|
0.87
|
0.87
|
|
PLS_50
|
0.80
|
0.72
|
0.74
|
0.74
|
|
Rule-Regression_50
|
0.57
|
0.49
|
0.46
|
0.46
|
|
Chi2_inf
|
0.49
|
0.41
|
0.31
|
0.31
|
|
Chi2_10
|
0.53
|
0.41
|
0.28
|
0.28
|
|
Chi2_50
|
0.53
|
0.44
|
0.38
|
0.38
|
|
ICA_inf
|
0.80
|
0.73
|
0.75
|
0.75
|
|
ICA_10
|
0.47
|
0.38
|
0.33
|
0.33
|
|
ICA_50
|
0.65
|
0.42
|
0.20
|
0.20
|
|
M_teo
|
0.12
|
0.09
|
0.08
|
0.07
|