IRTF (Met) GA Models vs Modern Catalogues [Newton, Mann, Gaidos].
Introduction
After the modelling process from GA features, the outcome will be compared against catallogues from Gaidos, Mann and Newton.
## Loading required package: MASS
## Loading required package: Cubist
## Loading required package: lattice
## Loading required package: caret
## Loading required package: ggplot2
## Loading required package: xtable
## Loading required package: Peaks
## Loading required package: magic
## Loading required package: abind
## Loading required package: JADE
## Loading required package: doMC
## Loading required package: foreach
## Loading required package: iterators
## Loading required package: parallel
## Loading required package: segmented
## Loading required package: fftw
## Loading required package: FITSio
## Loading required package: stringr
## Loading required package: ztable
## Welcome to package ztable ver 0.1.5
## Loading required package: party
## Loading required package: grid
## Loading required package: mvtnorm
## Loading required package: modeltools
## Loading required package: stats4
## Loading required package: strucchange
## Loading required package: zoo
##
## Attaching package: 'zoo'
##
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
##
## Loading required package: sandwich
##
## Attaching package: 'strucchange'
##
## The following object is masked from 'package:stringr':
##
## boundary
##
## Loading required package: signal
##
## Attaching package: 'signal'
##
## The following objects are masked from 'package:stats':
##
## filter, poly
##
## Loading required package: e1071
## Loading required package: plyr
##
## Attaching package: 'plyr'
##
## The following object is masked from 'package:modeltools':
##
## empty
##
## Loading required package: compare
##
## Attaching package: 'compare'
##
## The following object is masked from 'package:base':
##
## isTRUE
##
## Loading required package: mgcv
## Loading required package: nlme
## This is mgcv 1.8-11. For overview type 'help("mgcv-package")'.
##
## Attaching package: 'mgcv'
##
## The following object is masked from 'package:magic':
##
## magic
##
## Loading required package: elasticnet
## Loading required package: lars
## Loaded lars 1.2
##
## Loading required package: pbapply
## Loading required package: nnet
##
## Attaching package: 'nnet'
##
## The following object is masked from 'package:mgcv':
##
## multinom
##
## Loading required package: kernlab
##
## Attaching package: 'kernlab'
##
## The following object is masked from 'package:modeltools':
##
## prior
##
## Loading required package: pls
##
## Attaching package: 'pls'
##
## The following object is masked from 'package:caret':
##
## R2
##
## The following object is masked from 'package:stats':
##
## loadings
##
## Loading required package: devtools
## Loading required package: caretEnsemble
## Loading required package: mlbench
## Loading required package: mclust
## Package 'mclust' version 5.1
## Type 'citation("mclust")' for citing this R package in publications.
##
## Attaching package: 'mclust'
##
## The following object is masked from 'package:mgcv':
##
## mvn
##
## Loading required package: analogue
## Loading required package: vegan
## Loading required package: permute
##
## Attaching package: 'permute'
##
## The following object is masked from 'package:devtools':
##
## check
##
## The following object is masked from 'package:kernlab':
##
## how
##
## This is vegan 2.3-2
##
## Attaching package: 'vegan'
##
## The following object is masked from 'package:pls':
##
## scores
##
## The following object is masked from 'package:caret':
##
## tolerance
##
## This is analogue 0.16-3
##
## Attaching package: 'analogue'
##
## The following objects are masked from 'package:pls':
##
## crossval, pcr, RMSEP
##
## The following object is masked from 'package:compare':
##
## compare
##
## The following object is masked from 'package:plyr':
##
## join
##
## Loading required package: cluster
Loading predictions from GA based models
Loading recent models
1 final-Gaidos2014-*.tsv contiene muchas columnas. En particular, la primera contiene el nombre de la estrella, la #34 contiene Fe/H y la #35 la temperatura efectiva.
2 final-Mann2015-*.tsv: la primera contiene el nombre de la estrella, la #11 contiene Fe/H y la #8 la temperatura efectiva.
3 final-Newton2014*.tsv: la primera contiene el nombre de la estrella y la #15 contiene Fe/H. En el fichero de IPAC hay dos estrellas que están repetidas: es porque tienen dos estimaciones.
Comparison Fe/H between sources
Gaidos
|
drmse
|
dmae
|
drmdse
|
dmade
|
RF_Inf
|
0.79
|
0.75
|
0.74
|
0.74
|
GB_Inf
|
0.72
|
0.65
|
0.62
|
0.62
|
SVR_Inf
|
1.24
|
1.16
|
1.23
|
1.23
|
NNR_Inf
|
1.39
|
1.27
|
1.24
|
1.24
|
KNN_Inf
|
0.37
|
0.35
|
0.39
|
0.39
|
MARS_Inf
|
1.26
|
1.14
|
1.15
|
1.15
|
PLS_Inf
|
1.72
|
1.51
|
1.30
|
1.30
|
Rule-Regression_Inf
|
1.34
|
1.26
|
1.28
|
1.28
|
RF_10
|
0.48
|
0.41
|
0.38
|
0.38
|
GB_10
|
0.38
|
0.34
|
0.34
|
0.34
|
SVR_10
|
0.46
|
0.35
|
0.28
|
0.28
|
NNR_10
|
0.35
|
0.22
|
0.08
|
0.08
|
KNN_10
|
0.65
|
0.51
|
0.52
|
0.52
|
MARS_10
|
0.44
|
0.37
|
0.32
|
0.32
|
PLS_10
|
0.66
|
0.62
|
0.52
|
0.52
|
Rule-Regression_10
|
0.42
|
0.34
|
0.24
|
0.24
|
RF_50
|
0.44
|
0.40
|
0.38
|
0.38
|
GB_50
|
0.41
|
0.36
|
0.31
|
0.31
|
SVR_50
|
0.41
|
0.33
|
0.32
|
0.32
|
NNR_50
|
0.57
|
0.48
|
0.47
|
0.47
|
KNN_50
|
0.50
|
0.44
|
0.39
|
0.39
|
MARS_50
|
0.52
|
0.47
|
0.58
|
0.58
|
PLS_50
|
1.12
|
0.96
|
0.86
|
0.86
|
Rule-Regression_50
|
0.34
|
0.25
|
0.19
|
0.19
|
Chi2_inf
|
0.31
|
0.27
|
0.29
|
0.29
|
Chi2_10
|
0.49
|
0.39
|
0.36
|
0.36
|
Chi2_50
|
0.31
|
0.27
|
0.29
|
0.29
|
ICA_inf
|
0.36
|
0.27
|
0.20
|
0.20
|
ICA_10
|
0.29
|
0.20
|
0.14
|
0.14
|
ICA_50
|
0.60
|
0.47
|
0.51
|
0.51
|
M_teo
|
|
|
|
|
Mann
|
drmse
|
dmae
|
drmdse
|
dmade
|
RF_Inf
|
0.91
|
0.87
|
0.81
|
0.81
|
GB_Inf
|
0.86
|
0.78
|
0.78
|
0.76
|
SVR_Inf
|
1.38
|
1.30
|
1.41
|
1.41
|
NNR_Inf
|
1.59
|
1.47
|
1.68
|
1.66
|
KNN_Inf
|
0.38
|
0.33
|
0.33
|
0.33
|
MARS_Inf
|
1.46
|
1.35
|
1.31
|
1.30
|
PLS_Inf
|
1.95
|
1.73
|
1.49
|
1.48
|
Rule-Regression_Inf
|
1.59
|
1.51
|
1.62
|
1.62
|
RF_10
|
0.33
|
0.27
|
0.21
|
0.20
|
GB_10
|
0.31
|
0.25
|
0.23
|
0.23
|
SVR_10
|
0.32
|
0.26
|
0.24
|
0.23
|
NNR_10
|
0.31
|
0.26
|
0.25
|
0.25
|
KNN_10
|
0.47
|
0.35
|
0.19
|
0.19
|
MARS_10
|
0.32
|
0.27
|
0.28
|
0.27
|
PLS_10
|
0.50
|
0.41
|
0.40
|
0.38
|
Rule-Regression_10
|
0.32
|
0.26
|
0.25
|
0.25
|
RF_50
|
0.75
|
0.48
|
0.25
|
0.25
|
GB_50
|
0.72
|
0.45
|
0.26
|
0.26
|
SVR_50
|
0.45
|
0.33
|
0.22
|
0.21
|
NNR_50
|
0.56
|
0.48
|
0.38
|
0.38
|
KNN_50
|
0.35
|
0.29
|
0.26
|
0.26
|
MARS_50
|
0.56
|
0.50
|
0.50
|
0.49
|
PLS_50
|
1.21
|
1.05
|
0.91
|
0.89
|
Rule-Regression_50
|
0.46
|
0.32
|
0.19
|
0.19
|
Chi2_inf
|
0.36
|
0.31
|
0.30
|
0.30
|
Chi2_10
|
0.54
|
0.35
|
0.24
|
0.23
|
Chi2_50
|
0.36
|
0.31
|
0.30
|
0.30
|
ICA_inf
|
0.41
|
0.33
|
0.24
|
0.24
|
ICA_10
|
0.22
|
0.15
|
0.08
|
0.08
|
ICA_50
|
0.41
|
0.34
|
0.31
|
0.30
|
M_teo
|
0.24
|
0.23
|
0.24
|
0.23
|
Newton
|
drmse
|
dmae
|
drmdse
|
dmade
|
RF_Inf
|
0.65
|
0.57
|
0.64
|
0.64
|
GB_Inf
|
0.46
|
0.39
|
0.41
|
0.38
|
SVR_Inf
|
1.27
|
1.12
|
1.17
|
1.12
|
NNR_Inf
|
1.57
|
1.43
|
1.63
|
1.58
|
KNN_Inf
|
0.25
|
0.22
|
0.24
|
0.24
|
MARS_Inf
|
1.36
|
1.18
|
1.36
|
1.33
|
PLS_Inf
|
1.87
|
1.61
|
1.59
|
1.56
|
Rule-Regression_Inf
|
1.32
|
1.19
|
1.24
|
1.24
|
RF_10
|
0.27
|
0.23
|
0.23
|
0.23
|
GB_10
|
0.23
|
0.20
|
0.17
|
0.17
|
SVR_10
|
0.24
|
0.17
|
0.13
|
0.12
|
NNR_10
|
0.27
|
0.23
|
0.29
|
0.27
|
KNN_10
|
0.13
|
0.12
|
0.13
|
0.12
|
MARS_10
|
0.25
|
0.22
|
0.16
|
0.16
|
PLS_10
|
0.44
|
0.32
|
0.25
|
0.23
|
Rule-Regression_10
|
0.24
|
0.21
|
0.22
|
0.22
|
RF_50
|
0.29
|
0.26
|
0.27
|
0.27
|
GB_50
|
0.28
|
0.24
|
0.17
|
0.17
|
SVR_50
|
0.43
|
0.40
|
0.41
|
0.41
|
NNR_50
|
0.58
|
0.49
|
0.45
|
0.45
|
KNN_50
|
0.31
|
0.27
|
0.29
|
0.29
|
MARS_50
|
0.55
|
0.49
|
0.65
|
0.65
|
PLS_50
|
1.36
|
1.18
|
1.24
|
1.24
|
Rule-Regression_50
|
0.40
|
0.37
|
0.37
|
0.37
|
Chi2_inf
|
0.46
|
0.44
|
0.48
|
0.48
|
Chi2_10
|
0.35
|
0.32
|
0.36
|
0.35
|
Chi2_50
|
0.46
|
0.44
|
0.48
|
0.48
|
ICA_inf
|
0.37
|
0.34
|
0.37
|
0.36
|
ICA_10
|
0.14
|
0.11
|
0.13
|
0.11
|
ICA_50
|
0.44
|
0.42
|
0.44
|
0.44
|
M_teo
|
|
|
|
|