Load packages.

library(knitr)
library(stringr)
library(tidyr)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union

Import text file, identify delimiters, skip first 4 rows.

chess<-read.table("tournamentinfo.txt", sep="|", fill=TRUE, stringsAsFactors = FALSE, skip=4)
#str(chess) #testing
#head(chess) #testing

Combine observations across two rows.

namesrow <- chess[seq(1,nrow(chess),by=3),]
#head(namesrow) #testing
staterow <- chess[seq(2,nrow(chess),by=3),]
#head(staterow) #testing
chess <- cbind(namesrow, staterow)
#head(chess) #testing

Discard unneeded columns.

chess <- subset(chess[, c(1:10,12,13)])
#head(chess) #testing

Use regular expressions to extract player ID and pre-game rating.

chess <- extract(chess, V2.1, c('PID', 'PreRating'), '(.[0-9]{8}) / R: (.[0-9]{3,4})')
#str(chess) #testing

Use regular expressions to split each round into round number and opponent number.

[REVISED to adjust syntax of regular expression.]

chess <- extract (chess, V4, c('Game1', 'Opp1'), '([A-Z]{0,1})* +([0-9]{0,2})')
chess <- extract (chess, V5, c('Game2', 'Opp2'), '([A-Z]{0,1})* +([0-9]{0,2})')
chess <- extract (chess, V6, c('Game3', 'Opp3'), '([A-Z]{0,1})* +([0-9]{0,2})')
chess <- extract (chess, V7, c('Game4', 'Opp4'), '([A-Z]{0,1})* +([0-9]{0,2})')
chess <- extract (chess, V8, c('Game5', 'Opp5'), '([A-Z]{0,1})* +([0-9]{0,2})')
chess <- extract (chess, V9, c('Game6', 'Opp6'), '([A-Z]{0,1})* +([0-9]{0,2})')
chess <- extract (chess, V10, c('Game7', 'Opp7'), '([A-Z]{0,1})* +([0-9]{0,2})')

View result and structure.

knitr::kable(head(chess))
V1 V2 V3 Game1 Opp1 Game2 Opp2 Game3 Opp3 Game4 Opp4 Game5 Opp5 Game6 Opp6 Game7 Opp7 V1.1 PID PreRating
1 1 GARY HUA 6.0 39 21 18 14 7 12 4 ON 15445895 1794
4 2 DAKSHESH DARURI 6.0 63 58 4 17 16 20 7 MI 14598900 1553
7 3 ADITYA BAJAJ 6.0 8 61 25 21 11 13 12 MI 14959604 1384
10 4 PATRICK H SCHILLING 5.5 23 28 2 26 5 19 1 MI 12616049 1716
13 5 HANSHI ZUO 5.5 45 37 12 13 4 14 17 MI 14601533 1655
16 6 HANSEN SONG 5.0 34 29 11 35 10 27 21 OH 15055204 1686
str(chess)
## 'data.frame':    64 obs. of  20 variables:
##  $ V1       : chr  "    1 " "    2 " "    3 " "    4 " ...
##  $ V2       : chr  " GARY HUA                        " " DAKSHESH DARURI                 " " ADITYA BAJAJ                    " " PATRICK H SCHILLING             " ...
##  $ V3       : chr  "6.0  " "6.0  " "6.0  " "5.5  " ...
##  $ Game1    : chr  "" "" "" "" ...
##  $ Opp1     : chr  "39" "63" "8" "23" ...
##  $ Game2    : chr  "" "" "" "" ...
##  $ Opp2     : chr  "21" "58" "61" "28" ...
##  $ Game3    : chr  "" "" "" "" ...
##  $ Opp3     : chr  "18" "4" "25" "2" ...
##  $ Game4    : chr  "" "" "" "" ...
##  $ Opp4     : chr  "14" "17" "21" "26" ...
##  $ Game5    : chr  "" "" "" "" ...
##  $ Opp5     : chr  "7" "16" "11" "5" ...
##  $ Game6    : chr  "" "" "" "" ...
##  $ Opp6     : chr  "12" "20" "13" "19" ...
##  $ Game7    : chr  "" "" "" "" ...
##  $ Opp7     : chr  "4" "7" "12" "1" ...
##  $ V1.1     : chr  "   ON " "   MI " "   MI " "   MI " ...
##  $ PID      : chr  " 15445895" " 14598900" " 14959604" " 12616049" ...
##  $ PreRating: chr  "1794" "1553" "1384" "1716" ...

Change required character columns to numeric, view structure.

chess[, c(1,3,5,7,9,11,13,15,17,19,20)] <- sapply(chess[, c(1,3,5,7,9,11,13,15,17,19,20)], as.numeric)
str(chess)
## 'data.frame':    64 obs. of  20 variables:
##  $ V1       : num  1 2 3 4 5 6 7 8 9 10 ...
##  $ V2       : chr  " GARY HUA                        " " DAKSHESH DARURI                 " " ADITYA BAJAJ                    " " PATRICK H SCHILLING             " ...
##  $ V3       : num  6 6 6 5.5 5.5 5 5 5 5 5 ...
##  $ Game1    : chr  "" "" "" "" ...
##  $ Opp1     : num  39 63 8 23 45 34 57 3 25 16 ...
##  $ Game2    : chr  "" "" "" "" ...
##  $ Opp2     : num  21 58 61 28 37 29 46 32 18 19 ...
##  $ Game3    : chr  "" "" "" "" ...
##  $ Opp3     : num  18 4 25 2 12 11 13 14 59 55 ...
##  $ Game4    : chr  "" "" "" "" ...
##  $ Opp4     : num  14 17 21 26 13 35 11 9 8 31 ...
##  $ Game5    : chr  "" "" "" "" ...
##  $ Opp5     : num  7 16 11 5 4 10 1 47 26 6 ...
##  $ Game6    : chr  "" "" "" "" ...
##  $ Opp6     : num  12 20 13 19 14 27 9 28 7 25 ...
##  $ Game7    : chr  "" "" "" "" ...
##  $ Opp7     : num  4 7 12 1 17 21 2 19 20 18 ...
##  $ V1.1     : chr  "   ON " "   MI " "   MI " "   MI " ...
##  $ PID      : num  15445895 14598900 14959604 12616049 14601533 ...
##  $ PreRating: num  1794 1553 1384 1716 1655 ...

Create lookup table of all players and their pre-game rating, view structure.

tblookup <- subset(chess[, c(1,20)])
str(tblookup)
## 'data.frame':    64 obs. of  2 variables:
##  $ V1       : num  1 2 3 4 5 6 7 8 9 10 ...
##  $ PreRating: num  1794 1553 1384 1716 1655 ...
head(tblookup)
##    V1 PreRating
## 1   1      1794
## 4   2      1553
## 7   3      1384
## 10  4      1716
## 13  5      1655
## 16  6      1686

Perform lookup for each opponent by their opponent number.

combo<- merge(chess, tblookup, by.x="Opp1",by.y="V1", sort=FALSE, all.x=TRUE)
combo<- merge(combo, tblookup, by.x="Opp2",by.y="V1", sort=FALSE, all.x=TRUE)
combo<- merge(combo, tblookup, by.x="Opp3",by.y="V1", sort=FALSE, all.x=TRUE)
## Warning in merge.data.frame(combo, tblookup, by.x = "Opp3", by.y = "V1", :
## column names 'PreRating.x', 'PreRating.y' are duplicated in the result
combo<- merge(combo, tblookup, by.x="Opp4",by.y="V1", sort=FALSE, all.x=TRUE)
## Warning in merge.data.frame(combo, tblookup, by.x = "Opp4", by.y = "V1", :
## column names 'PreRating.x', 'PreRating.y' are duplicated in the result
combo<- merge(combo, tblookup, by.x="Opp5",by.y="V1", sort=FALSE, all.x=TRUE)
## Warning in merge.data.frame(combo, tblookup, by.x = "Opp5", by.y = "V1", :
## column names 'PreRating.x', 'PreRating.y', 'PreRating.x', 'PreRating.y' are
## duplicated in the result
combo<- merge(combo, tblookup, by.x="Opp6",by.y="V1", sort=FALSE, all.x=TRUE)
## Warning in merge.data.frame(combo, tblookup, by.x = "Opp6", by.y = "V1", :
## column names 'PreRating.x', 'PreRating.y', 'PreRating.x', 'PreRating.y' are
## duplicated in the result
combo<- merge(combo, tblookup, by.x="Opp7",by.y="V1", sort=FALSE, all.x=TRUE)
## Warning in merge.data.frame(combo, tblookup, by.x = "Opp7", by.y = "V1", :
## column names 'PreRating.x', 'PreRating.y', 'PreRating.x', 'PreRating.y',
## 'PreRating.x', 'PreRating.y' are duplicated in the result

Discard unneeded columns, rename columns, view result.

[REVISED to sort columns with ‘order’.]

combo <- subset(combo[, c(8:10,18:27)])
colnames(combo) <- c("Order","Player'S Name","Total Number of Points","Player's State","Player ID","Player's PreRating","Opp1PR","Opp2PR","Opp3PR","Opp4PR","Opp5PR","Opp6PR","Opp7PR")

combo<-combo[ order(combo[,1]), ]
knitr::kable((head(combo)))
Order Player’S Name Total Number of Points Player’s State Player ID Player’s PreRating Opp1PR Opp2PR Opp3PR Opp4PR Opp5PR Opp6PR Opp7PR
1 GARY HUA 6.0 ON 15445895 1794 1436 1563 1600 1610 1649 1663 1716
2 DAKSHESH DARURI 6.0 MI 14598900 1553 1175 917 1716 1629 1604 1595 1649
3 ADITYA BAJAJ 6.0 MI 14959604 1384 1641 955 1745 1563 1712 1666 1663
4 PATRICK H SCHILLING 5.5 MI 12616049 1716 1363 1507 1553 1579 1655 1564 1794
5 HANSHI ZUO 5.5 MI 14601533 1655 1242 980 1663 1666 1716 1610 1629
6 HANSEN SONG 5.0 OH 15055204 1686 1399 1602 1712 1438 1365 1552 1563
knitr::kable((tail(combo)))
Order Player’S Name Total Number of Points Player’s State Player ID Player’s PreRating Opp1PR Opp2PR Opp3PR Opp4PR Opp5PR Opp6PR Opp7PR
43 59 SEAN M MC CORMICK 2.0 MI 12841036 853 1403 NA 1411 1348 1283 1270 1199
63 60 JULIA SHEN 1.5 MI 14579262 967 1449 1399 1242 1332 1229 NA NA
40 61 JEZZEL FARKAS 1.5 ON 15771592 955 1441 1384 1270 1362 1332 1522 980
55 62 ASHWIN BALAJI 1.0 MI 15219542 1530 1186 NA NA NA NA NA NA
60 63 THOMAS JOSEPH HOSMER 1.0 MI 15057092 1175 1553 1382 1291 1283 1242 NA NA
41 64 BEN LI 1.0 MI 15006561 1163 1555 1522 1494 1291 377 1332 1270

Add column for average opponent pre-game rating, view result.

[REVISED to add ‘na.rm=TRUE’ to remove NA values from mean.]

combo <- mutate(combo, "Average Pre-Chess Rating of Opponents" = round(rowMeans(combo[,7:13],na.rm = TRUE),0))
knitr::kable((head(combo)))
Order Player’S Name Total Number of Points Player’s State Player ID Player’s PreRating Opp1PR Opp2PR Opp3PR Opp4PR Opp5PR Opp6PR Opp7PR Average Pre-Chess Rating of Opponents
1 GARY HUA 6.0 ON 15445895 1794 1436 1563 1600 1610 1649 1663 1716 1605
2 DAKSHESH DARURI 6.0 MI 14598900 1553 1175 917 1716 1629 1604 1595 1649 1469
3 ADITYA BAJAJ 6.0 MI 14959604 1384 1641 955 1745 1563 1712 1666 1663 1564
4 PATRICK H SCHILLING 5.5 MI 12616049 1716 1363 1507 1553 1579 1655 1564 1794 1574
5 HANSHI ZUO 5.5 MI 14601533 1655 1242 980 1663 1666 1716 1610 1629 1501
6 HANSEN SONG 5.0 OH 15055204 1686 1399 1602 1712 1438 1365 1552 1563 1519
knitr::kable((tail(combo)))
Order Player’S Name Total Number of Points Player’s State Player ID Player’s PreRating Opp1PR Opp2PR Opp3PR Opp4PR Opp5PR Opp6PR Opp7PR Average Pre-Chess Rating of Opponents
59 59 SEAN M MC CORMICK 2.0 MI 12841036 853 1403 NA 1411 1348 1283 1270 1199 1319
60 60 JULIA SHEN 1.5 MI 14579262 967 1449 1399 1242 1332 1229 NA NA 1330
61 61 JEZZEL FARKAS 1.5 ON 15771592 955 1441 1384 1270 1362 1332 1522 980 1327
62 62 ASHWIN BALAJI 1.0 MI 15219542 1530 1186 NA NA NA NA NA NA 1186
63 63 THOMAS JOSEPH HOSMER 1.0 MI 15057092 1175 1553 1382 1291 1283 1242 NA NA 1350
64 64 BEN LI 1.0 MI 15006561 1163 1555 1522 1494 1291 377 1332 1270 1263

Discard unneeded columns, view result.

results <- subset(combo[,c(1:4,6,14)])
knitr::kable(results)
Order Player’S Name Total Number of Points Player’s State Player’s PreRating Average Pre-Chess Rating of Opponents
1 GARY HUA 6.0 ON 1794 1605
2 DAKSHESH DARURI 6.0 MI 1553 1469
3 ADITYA BAJAJ 6.0 MI 1384 1564
4 PATRICK H SCHILLING 5.5 MI 1716 1574
5 HANSHI ZUO 5.5 MI 1655 1501
6 HANSEN SONG 5.0 OH 1686 1519
7 GARY DEE SWATHELL 5.0 MI 1649 1372
8 EZEKIEL HOUGHTON 5.0 MI 1641 1468
9 STEFANO LEE 5.0 ON 1411 1523
10 ANVIT RAO 5.0 MI 1365 1554
11 CAMERON WILLIAM MC LEMAN 4.5 MI 1712 1468
12 KENNETH J TACK 4.5 MI 1663 1506
13 TORRANCE HENRY JR 4.5 MI 1666 1498
14 BRADLEY SHAW 4.5 MI 1610 1515
15 ZACHARY JAMES HOUGHTON 4.5 MI 1220 1484
16 MIKE NIKITIN 4.0 MI 1604 1386
17 RONALD GRZEGORCZYK 4.0 MI 1629 1499
18 DAVID SUNDEEN 4.0 MI 1600 1480
19 DIPANKAR ROY 4.0 MI 1564 1426
20 JASON ZHENG 4.0 MI 1595 1411
21 DINH DANG BUI 4.0 ON 1563 1470
22 EUGENE L MCCLURE 4.0 MI 1555 1300
23 ALAN BUI 4.0 ON 1363 1214
24 MICHAEL R ALDRICH 4.0 MI 1229 1357
25 LOREN SCHWIEBERT 3.5 MI 1745 1363
26 MAX ZHU 3.5 ON 1579 1507
27 GAURAV GIDWANI 3.5 MI 1552 1222
28 SOFIA ADINA STANESCU-BELLU 3.5 MI 1507 1522
29 CHIEDOZIE OKORIE 3.5 MI 1602 1314
30 GEORGE AVERY JONES 3.5 ON 1522 1144
31 RISHI SHETTY 3.5 MI 1494 1260
32 JOSHUA PHILIP MATHEWS 3.5 ON 1441 1379
33 JADE GE 3.5 MI 1449 1277
34 MICHAEL JEFFERY THOMAS 3.5 MI 1399 1375
35 JOSHUA DAVID LEE 3.5 MI 1438 1150
36 SIDDHARTH JHA 3.5 MI 1355 1388
37 AMIYATOSH PWNANANDAM 3.5 MI 980 1385
38 BRIAN LIU 3.0 MI 1423 1539
39 JOEL R HENDON 3.0 MI 1436 1430
40 FOREST ZHANG 3.0 MI 1348 1391
41 KYLE WILLIAM MURPHY 3.0 MI 1403 1248
42 JARED GE 3.0 MI 1332 1150
43 ROBERT GLEN VASEY 3.0 MI 1283 1107
44 JUSTIN D SCHILLING 3.0 MI 1199 1327
45 DEREK YAN 3.0 MI 1242 1152
46 JACOB ALEXANDER LAVALLEY 3.0 MI 377 1358
47 ERIC WRIGHT 2.5 MI 1362 1392
48 DANIEL KHAIN 2.5 MI 1382 1356
49 MICHAEL J MARTIN 2.5 MI 1291 1286
50 SHIVAM JHA 2.5 MI 1056 1296
51 TEJAS AYYAGARI 2.5 MI 1011 1356
52 ETHAN GUO 2.5 MI 935 1495
53 JOSE C YBARRA 2.0 MI 1393 1345
54 LARRY HODGE 2.0 MI 1270 1206
55 ALEX KONG 2.0 MI 1186 1406
56 MARISA RICCI 2.0 MI 1153 1414
57 MICHAEL LU 2.0 MI 1092 1363
58 VIRAJ MOHILE 2.0 MI 917 1391
59 SEAN M MC CORMICK 2.0 MI 853 1319
60 JULIA SHEN 1.5 MI 967 1330
61 JEZZEL FARKAS 1.5 ON 955 1327
62 ASHWIN BALAJI 1.0 MI 1530 1186
63 THOMAS JOSEPH HOSMER 1.0 MI 1175 1350
64 BEN LI 1.0 MI 1163 1263

Export as CSV.

write.table(results, "chessresults.txt")

This can be done more easily.