The goal of this project is to build a machine learning model from the sample data acquired from motion sensors on participants bodies, which should most accurately predict the manner in which the weight lifting exercise was performed. The sensor data is used to investigate “how well” an activity was performed by the wearer. We will try three different classification prediction algorithms, check their accuracy on the training set and then use the best one to make prediction of the class variable (“classe” in original dataset, meaning class in portugese) in the test set and assigning it to one of 5 given values:
Using devices such as JawboneUp, NikeFuelBand, and Fitbitit is now possible to collect a large amount of data about personal activity relatively inexpensively. These type of devices are part of the quantified self movement - a group of enthusiasts who take measurements about themselves regularly to improve their health, to find patterns in their behavior, or because they are tech geeks. One thing that people regularly do is quantify how much of a particular activity they do, but they rarely quantify how well they do it.
In this analysis, we will use sensor data acquired from accelerometers on the belt, forearm, arm, and dumbell of six participants between 20 to 28 years with little weight lifting experience during exercising with barbells. They were asked to perform barbell lifts correctly and incorrectly in 5 different ways. More information is available from the Human Activity Recognition project webpage (see the section on the Weight Lifting Exercise Dataset).
The training data for this project are available here:
https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv
The test data are available here:
https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv
Six young health participants were asked to perform one set of 10 repetitions of the Unilateral Dumbbell Biceps Curl in five different fashions: exactly according to the specification (Class A), throwing the elbows to the front (Class B), lifting the dumbbell only halfway (Class C), lowering the dumbbell only halfway (Class D) and throwing the hips to the front (Class E). Class A corresponds to the specified execution of the exercise, while the other 4 classes correspond to common mistakes.
There are 159 attributes in the dataset and 19622 observations. The data in the dataset consists of these three data types: factor, integer, numeric.
The dataset contains time series variables in columns 2 to 6 which are not related to the movement and are useless to our analysis so we’ll discard them. Also there are lots of columns with the large number of missing values (more than 90% of the data missing) which we’ll remove from the dataset.
# Remove time-series data
training = training[, -(2:6)]
test = test[, -(2:6)]
# Remove NAs
nas <- colSums(is.na(training))
table(nas)
length(nas[nas == 0 ])
length(nas[nas != 0 ])
NAcolumns <- sapply(training, function(x) (sum(is.na(x)) > 0.9*rownum)) # columns where more than 90% of data is NA
training <- training[, NAcolumns == FALSE]
test <- test[, NAcolumns == FALSE]
attrNum = length(names(training)) # resulting variables in used dataset
After removing the columns with non-available data resulting dataset has 54 variables. Cleaned dataset looks like this:
# Describe dataset
str(training)
## 'data.frame': 19622 obs. of 54 variables:
## $ user_name : Factor w/ 6 levels "adelmo","carlitos",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ roll_belt : num 1.41 1.41 1.42 1.48 1.48 1.45 1.42 1.42 1.43 1.45 ...
## $ pitch_belt : num 8.07 8.07 8.07 8.05 8.07 8.06 8.09 8.13 8.16 8.17 ...
## $ yaw_belt : num -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 -94.4 ...
## $ total_accel_belt : int 3 3 3 3 3 3 3 3 3 3 ...
## $ gyros_belt_x : num 0 0.02 0 0.02 0.02 0.02 0.02 0.02 0.02 0.03 ...
## $ gyros_belt_y : num 0 0 0 0 0.02 0 0 0 0 0 ...
## $ gyros_belt_z : num -0.02 -0.02 -0.02 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 0 ...
## $ accel_belt_x : int -21 -22 -20 -22 -21 -21 -22 -22 -20 -21 ...
## $ accel_belt_y : int 4 4 5 3 2 4 3 4 2 4 ...
## $ accel_belt_z : int 22 22 23 21 24 21 21 21 24 22 ...
## $ magnet_belt_x : int -3 -7 -2 -6 -6 0 -4 -2 1 -3 ...
## $ magnet_belt_y : int 599 608 600 604 600 603 599 603 602 609 ...
## $ magnet_belt_z : int -313 -311 -305 -310 -302 -312 -311 -313 -312 -308 ...
## $ roll_arm : num -128 -128 -128 -128 -128 -128 -128 -128 -128 -128 ...
## $ pitch_arm : num 22.5 22.5 22.5 22.1 22.1 22 21.9 21.8 21.7 21.6 ...
## $ yaw_arm : num -161 -161 -161 -161 -161 -161 -161 -161 -161 -161 ...
## $ total_accel_arm : int 34 34 34 34 34 34 34 34 34 34 ...
## $ gyros_arm_x : num 0 0.02 0.02 0.02 0 0.02 0 0.02 0.02 0.02 ...
## $ gyros_arm_y : num 0 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.02 -0.03 -0.03 ...
## $ gyros_arm_z : num -0.02 -0.02 -0.02 0.02 0 0 0 0 -0.02 -0.02 ...
## $ accel_arm_x : int -288 -290 -289 -289 -289 -289 -289 -289 -288 -288 ...
## $ accel_arm_y : int 109 110 110 111 111 111 111 111 109 110 ...
## $ accel_arm_z : int -123 -125 -126 -123 -123 -122 -125 -124 -122 -124 ...
## $ magnet_arm_x : int -368 -369 -368 -372 -374 -369 -373 -372 -369 -376 ...
## $ magnet_arm_y : int 337 337 344 344 337 342 336 338 341 334 ...
## $ magnet_arm_z : int 516 513 513 512 506 513 509 510 518 516 ...
## $ roll_dumbbell : num 13.1 13.1 12.9 13.4 13.4 ...
## $ pitch_dumbbell : num -70.5 -70.6 -70.3 -70.4 -70.4 ...
## $ yaw_dumbbell : num -84.9 -84.7 -85.1 -84.9 -84.9 ...
## $ total_accel_dumbbell: int 37 37 37 37 37 37 37 37 37 37 ...
## $ gyros_dumbbell_x : num 0 0 0 0 0 0 0 0 0 0 ...
## $ gyros_dumbbell_y : num -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 ...
## $ gyros_dumbbell_z : num 0 0 0 -0.02 0 0 0 0 0 0 ...
## $ accel_dumbbell_x : int -234 -233 -232 -232 -233 -234 -232 -234 -232 -235 ...
## $ accel_dumbbell_y : int 47 47 46 48 48 48 47 46 47 48 ...
## $ accel_dumbbell_z : int -271 -269 -270 -269 -270 -269 -270 -272 -269 -270 ...
## $ magnet_dumbbell_x : int -559 -555 -561 -552 -554 -558 -551 -555 -549 -558 ...
## $ magnet_dumbbell_y : int 293 296 298 303 292 294 295 300 292 291 ...
## $ magnet_dumbbell_z : num -65 -64 -63 -60 -68 -66 -70 -74 -65 -69 ...
## $ roll_forearm : num 28.4 28.3 28.3 28.1 28 27.9 27.9 27.8 27.7 27.7 ...
## $ pitch_forearm : num -63.9 -63.9 -63.9 -63.9 -63.9 -63.9 -63.9 -63.8 -63.8 -63.8 ...
## $ yaw_forearm : num -153 -153 -152 -152 -152 -152 -152 -152 -152 -152 ...
## $ total_accel_forearm : int 36 36 36 36 36 36 36 36 36 36 ...
## $ gyros_forearm_x : num 0.03 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.02 ...
## $ gyros_forearm_y : num 0 0 -0.02 -0.02 0 -0.02 0 -0.02 0 0 ...
## $ gyros_forearm_z : num -0.02 -0.02 0 0 -0.02 -0.03 -0.02 0 -0.02 -0.02 ...
## $ accel_forearm_x : int 192 192 196 189 189 193 195 193 193 190 ...
## $ accel_forearm_y : int 203 203 204 206 206 203 205 205 204 205 ...
## $ accel_forearm_z : int -215 -216 -213 -214 -214 -215 -215 -213 -214 -215 ...
## $ magnet_forearm_x : int -17 -18 -18 -16 -17 -9 -18 -9 -16 -22 ...
## $ magnet_forearm_y : num 654 661 658 658 655 660 659 660 653 656 ...
## $ magnet_forearm_z : num 476 473 469 469 473 478 470 474 476 473 ...
## $ classe : Factor w/ 5 levels "A","B","C","D",..: 1 1 1 1 1 1 1 1 1 1 ...
To get a better look at our data we are going to make few density plots of four different types of variables grouped by the type of movement in all three directions:
Since the dataset we’re given is pretty large, we’ll keep 70% of data from the original dataset for the training purposes and remaining 30% we’ll put in the validation set. The classification models will be built on the training sets and then their accuracy will be checked on validation set.
inTrain <- createDataPartition(y=training$classe, p=0.7, list=FALSE)
train <- training[inTrain, ]
validate <- training[-inTrain, ]
dim(train)
dim(validate)
Next, we are going to use three different prediction algorithms to determine which one can provide the best accuracy on our validation set. The three algorithms are: decision tree, random forests and generalized boosted regression.
set.seed(909)
DSmodel <- rpart(classe ~ ., data=train, method="class")
fancyRpartPlot(DSmodel, sub="")
DSprediction <- predict(DSmodel, validate, type = "class")
DSconf <- confusionMatrix(DSprediction, validate$classe)
DSaccuracy <- round(DSconf$overall['Accuracy'], 4)
print(DSconf)
## Confusion Matrix and Statistics
##
## Reference
## Prediction A B C D E
## A 1368 151 22 39 14
## B 62 614 58 79 81
## C 36 118 797 141 130
## D 190 193 126 639 160
## E 18 63 23 66 697
##
## Overall Statistics
##
## Accuracy : 0.6992
## 95% CI : (0.6873, 0.7109)
## No Information Rate : 0.2845
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.6211
## Mcnemar's Test P-Value : < 2.2e-16
##
## Statistics by Class:
##
## Class: A Class: B Class: C Class: D Class: E
## Sensitivity 0.8172 0.5391 0.7768 0.6629 0.6442
## Specificity 0.9463 0.9410 0.9125 0.8641 0.9646
## Pos Pred Value 0.8582 0.6868 0.6522 0.4885 0.8039
## Neg Pred Value 0.9287 0.8948 0.9509 0.9290 0.9233
## Prevalence 0.2845 0.1935 0.1743 0.1638 0.1839
## Detection Rate 0.2325 0.1043 0.1354 0.1086 0.1184
## Detection Prevalence 0.2709 0.1519 0.2076 0.2223 0.1473
## Balanced Accuracy 0.8818 0.7400 0.8447 0.7635 0.8044
plot(DSconf$table, col = DSconf$byClass, main = paste("Decision Tree model confusion matrix: Accuracy =", round(DSconf$overall['Accuracy'], 4)))
The in-sample accuracy for our decision tree model is 69.92%. Next we make the prediction using the random forests algorithm.
set.seed(808)
RFmodel <- randomForest(classe ~ ., data=train)
RFprediction <- predict(RFmodel, validate, type = "class")
RFconf <- confusionMatrix(RFprediction, validate$classe)
print(RFconf)
## Confusion Matrix and Statistics
##
## Reference
## Prediction A B C D E
## A 1670 3 0 0 0
## B 3 1128 2 0 0
## C 0 8 1024 11 0
## D 0 0 0 950 4
## E 1 0 0 3 1078
##
## Overall Statistics
##
## Accuracy : 0.9941
## 95% CI : (0.9917, 0.9959)
## No Information Rate : 0.2845
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.9925
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: A Class: B Class: C Class: D Class: E
## Sensitivity 0.9976 0.9903 0.9981 0.9855 0.9963
## Specificity 0.9993 0.9989 0.9961 0.9992 0.9992
## Pos Pred Value 0.9982 0.9956 0.9818 0.9958 0.9963
## Neg Pred Value 0.9991 0.9977 0.9996 0.9972 0.9992
## Prevalence 0.2845 0.1935 0.1743 0.1638 0.1839
## Detection Rate 0.2838 0.1917 0.1740 0.1614 0.1832
## Detection Prevalence 0.2843 0.1925 0.1772 0.1621 0.1839
## Balanced Accuracy 0.9984 0.9946 0.9971 0.9923 0.9977
RFaccuracy <- round(RFconf$overall['Accuracy'], 4)
plot(RFconf$table, col = RFconf$byClass, main = paste("Random Forest model confusion matrix: Accuracy =", round(RFconf$overall['Accuracy'], 4)))
For our random forests model in-sample prediction accuracy is 99.41%, which is almost perfect. Finally, we will use generalized boosted regression algorithm for our last prediction.
set.seed(303)
fitControl <- trainControl(method = "repeatedcv",
number = 5,
repeats = 1)
GBRmodel <- train(classe ~ ., data=train, method="gbm",
trControl = fitControl,
verbose = FALSE)
GBRfinal <- GBRmodel$finalModel
GBRprediction <- predict(GBRmodel, newdata=validate)
GBRconf <- confusionMatrix(GBRprediction, validate$classe)
GBRaccuracy <- round(GBRconf$overall[1], 4)
print(GBRaccuracy)
## Accuracy
## 0.9602
plot(GBRconf$table, col = GBRconf$byClass, main = paste("Generalized Boosted Regression model confusion matrix: Accuracy =", round(GBRconf$overall['Accuracy'], 4)))
Our generalized boosted regression model has an in-sample accuracy of 96.02%, which is good but not so much as the random forests algorithm.
Comparing the three classification algorithms used and their respective results, we conclude that random forests algorithm produced the best accuracy of 99.41%, so we are going to use it to make the predictions on the test data set where we expect to get out-of-sample error of only 0.59%.
| MODEL | ACCURACY |
|---|---|
| Decision Tree | 0.6992 |
| Random Forests | 0.9941 |
| Generalized Boosted Regression | 0.9602 |
Table 1. Accuracy comparison between three different models
The dataset we need to submit for evaluation has 20 observations for which we are going to use our random forests model and predict which class observation (data from different motion sensors for a particular parcipient) belongs to.
library(randomForest)
RFpredictSubmit <- predict(RFmodel, test, type = "class")
results <- data.frame("Participant"=test$user_name, "Problem_id"=test$problem_id, "Class"=RFpredictSubmit)
print(results)
## Participant Problem_id Class
## 1 pedro 1 B
## 2 jeremy 2 A
## 3 jeremy 3 B
## 4 adelmo 4 A
## 5 eurico 5 A
## 6 jeremy 6 E
## 7 jeremy 7 D
## 8 jeremy 8 B
## 9 carlitos 9 A
## 10 charles 10 A
## 11 carlitos 11 B
## 12 jeremy 12 C
## 13 eurico 13 B
## 14 jeremy 14 A
## 15 jeremy 15 E
## 16 eurico 16 E
## 17 pedro 17 A
## 18 carlitos 18 B
## 19 pedro 19 B
## 20 eurico 20 B
After submission of the predictions’ results on the Coursera evaluation webpage the result of 100% prediction accuracy was received on the test dataset, so we conclude that our random forest model was very successful in this case.
Citation:
This RMarkdown document was produced with RStudio v0.0.99.486 on R v3.2.2.