In this analysis, we attempt to find out whether a manual or automatic transmission is better for miles per gallon (mpg). Specifically, we investigate a data set of a collection of cars to answer the following 2 questions: 1) Is an automatic or manual transmission better for MPG? 2) Quantifying how different is the MPG between automatic and manual transmissions?
We first load the data and perform some exploratory data analysis plots to understand the data, particularly any relationship between mpg and am (the two key variables we are investigating in this study):
data(mtcars)
str(mtcars)
## 'data.frame': 32 obs. of 11 variables:
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
## $ am : num 1 1 1 0 0 0 0 0 0 0 ...
## $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
## $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
mtcars$am <- factor(mtcars$am, labels=c('Automatic','Manual'))
boxplot(mpg ~ am, data = mtcars, xlab = "Transmission type", ylab = "mpg", main = "Mpg vs Transmission types")
We can identify clearly from the boxplot that mpg of Manual transmission cars is higher than that of Automatic transmission cars.
From the EDA performed, we also noted 4 other variables which should be reclassed as factor variables:
mtcars$cyl <- factor(mtcars$cyl)
mtcars$vs <- factor(mtcars$vs)
mtcars$gear <- factor(mtcars$gear)
mtcars$carb <- factor(mtcars$carb)
We first start off with building a regression model with am as the only variable. We will use mpg as the dependent variable and am as the independent variable to fit the linear regression.
model_1 <- lm(mpg ~ am, data = mtcars)
summary(model_1)
##
## Call:
## lm(formula = mpg ~ am, data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.3923 -3.0923 -0.2974 3.2439 9.5077
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 17.147 1.125 15.247 1.13e-15 ***
## amManual 7.245 1.764 4.106 0.000285 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.902 on 30 degrees of freedom
## Multiple R-squared: 0.3598, Adjusted R-squared: 0.3385
## F-statistic: 16.86 on 1 and 30 DF, p-value: 0.000285
We can see that the adjusted R squared value is only 0.34 which means that only 34% of the regression variance can be explained by our model. As this model does not seem adequate, we proceed to consider multivariate regression by including other variables.
However, as there are several variables to be considered in building this regression model, it would be more appropriate to build a model with all variables as predictors, and perfom stepwise model selection to select only the significant predictors for the final best model. To perform this, we utilise the step function in R which runs lm multiple times to build multiple regression models and select the best variables from them using both forward selection and backward elimination methods by the AIC algorithm.
model_all <- lm(mpg ~., data = mtcars)
best_model <- step(model_all, direction = "both")
## Start: AIC=76.4
## mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am + gear + carb
##
## Df Sum of Sq RSS AIC
## - carb 5 13.5989 134.00 69.828
## - gear 2 3.9729 124.38 73.442
## - am 1 1.1420 121.55 74.705
## - qsec 1 1.2413 121.64 74.732
## - drat 1 1.8208 122.22 74.884
## - cyl 2 10.9314 131.33 75.184
## - vs 1 3.6299 124.03 75.354
## <none> 120.40 76.403
## - disp 1 9.9672 130.37 76.948
## - wt 1 25.5541 145.96 80.562
## - hp 1 25.6715 146.07 80.588
##
## Step: AIC=69.83
## mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am + gear
##
## Df Sum of Sq RSS AIC
## - gear 2 5.0215 139.02 67.005
## - disp 1 0.9934 135.00 68.064
## - drat 1 1.1854 135.19 68.110
## - vs 1 3.6763 137.68 68.694
## - cyl 2 12.5642 146.57 68.696
## - qsec 1 5.2634 139.26 69.061
## <none> 134.00 69.828
## - am 1 11.9255 145.93 70.556
## - wt 1 19.7963 153.80 72.237
## - hp 1 22.7935 156.79 72.855
## + carb 5 13.5989 120.40 76.403
##
## Step: AIC=67
## mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am
##
## Df Sum of Sq RSS AIC
## - drat 1 0.9672 139.99 65.227
## - cyl 2 10.4247 149.45 65.319
## - disp 1 1.5483 140.57 65.359
## - vs 1 2.1829 141.21 65.503
## - qsec 1 3.6324 142.66 65.830
## <none> 139.02 67.005
## - am 1 16.5665 155.59 68.608
## - hp 1 18.1768 157.20 68.937
## + gear 2 5.0215 134.00 69.828
## - wt 1 31.1896 170.21 71.482
## + carb 5 14.6475 124.38 73.442
##
## Step: AIC=65.23
## mpg ~ cyl + disp + hp + wt + qsec + vs + am
##
## Df Sum of Sq RSS AIC
## - disp 1 1.2474 141.24 63.511
## - vs 1 2.3403 142.33 63.757
## - cyl 2 12.3267 152.32 63.927
## - qsec 1 3.1000 143.09 63.928
## <none> 139.99 65.227
## + drat 1 0.9672 139.02 67.005
## - hp 1 17.7382 157.73 67.044
## - am 1 19.4660 159.46 67.393
## + gear 2 4.8033 135.19 68.110
## - wt 1 30.7151 170.71 69.574
## + carb 5 13.0509 126.94 72.095
##
## Step: AIC=63.51
## mpg ~ cyl + hp + wt + qsec + vs + am
##
## Df Sum of Sq RSS AIC
## - qsec 1 2.442 143.68 62.059
## - vs 1 2.744 143.98 62.126
## - cyl 2 18.580 159.82 63.466
## <none> 141.24 63.511
## + disp 1 1.247 139.99 65.227
## + drat 1 0.666 140.57 65.359
## - hp 1 18.184 159.42 65.386
## - am 1 18.885 160.12 65.527
## + gear 2 4.684 136.55 66.431
## - wt 1 39.645 180.88 69.428
## + carb 5 2.331 138.91 72.978
##
## Step: AIC=62.06
## mpg ~ cyl + hp + wt + vs + am
##
## Df Sum of Sq RSS AIC
## - vs 1 7.346 151.03 61.655
## <none> 143.68 62.059
## - cyl 2 25.284 168.96 63.246
## + qsec 1 2.442 141.24 63.511
## - am 1 16.443 160.12 63.527
## + disp 1 0.589 143.09 63.928
## + drat 1 0.330 143.35 63.986
## + gear 2 3.437 140.24 65.284
## - hp 1 36.344 180.02 67.275
## - wt 1 41.088 184.77 68.108
## + carb 5 3.480 140.20 71.275
##
## Step: AIC=61.65
## mpg ~ cyl + hp + wt + am
##
## Df Sum of Sq RSS AIC
## <none> 151.03 61.655
## - am 1 9.752 160.78 61.657
## + vs 1 7.346 143.68 62.059
## + qsec 1 7.044 143.98 62.126
## - cyl 2 29.265 180.29 63.323
## + disp 1 0.617 150.41 63.524
## + drat 1 0.220 150.81 63.608
## + gear 2 1.361 149.66 65.365
## - hp 1 31.943 182.97 65.794
## - wt 1 46.173 197.20 68.191
## + carb 5 5.633 145.39 70.438
summary(best_model)
##
## Call:
## lm(formula = mpg ~ cyl + hp + wt + am, data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9387 -1.2560 -0.4013 1.1253 5.0513
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 33.70832 2.60489 12.940 7.73e-13 ***
## cyl6 -3.03134 1.40728 -2.154 0.04068 *
## cyl8 -2.16368 2.28425 -0.947 0.35225
## hp -0.03211 0.01369 -2.345 0.02693 *
## wt -2.49683 0.88559 -2.819 0.00908 **
## amManual 1.80921 1.39630 1.296 0.20646
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.41 on 26 degrees of freedom
## Multiple R-squared: 0.8659, Adjusted R-squared: 0.8401
## F-statistic: 33.57 on 5 and 26 DF, p-value: 1.506e-10
Based on the best model identified by step function, we noted that the adjusted R squared value has improved to 0.84, which is the maximum obtained considering all combinations of variables. Thus, we can conclude that this model with cyl + hp + wt + am as the 4 predictors is a better model than the earlier model_1. Hence, we decide to utilise this model.
Additionally, we also plot the respective residuals plots to examine any heteroskedacity between the fitted and residual values and also to check for any non-normality:
par(mfrow = c(2, 2))
plot(best_model)
As we can see from the graphs: 1) We do not identify any patterns from the Residuals vs Fitted graph, which supports that our model should be reasonably accurate. 2) The normal Q-Q plot (upper right) also indicates that the model seems to have met the normality assumption.
Hence, we can conclude that our best_model seems to be an appropriate multivariate regression model which relates the 4 key varaibles (including am) with mpg. We focus on the am factor and noted that in general, our best_model coefficients explain that manual transmission cars on avergae have 1.81 miles per gallon more tha automatic cars.