In this report, the goal is to analyze the impact of different weather events on public health and economy based on the storm database collected from the U.S. National Oceanic and Atmospheric Administration’s (NOAA) from 1950 - 2011. The data used will be estimates of fatalities, injuries, property and crop damage to decide which types of event are most harmful to the population health and economy. From these data, we found that high temperatures and tornado are most harmful with respect to population health, while flood, drought, and hurricane/typhoon have the greatest economic impacts.
First, we check to make sure the data is present, if not download it. Then we decompress it so we can proess it.
if (! file.exists("data/repdata-data_StormData.csv.bz2")) {
print("hhhh")
download.file("http://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2", destfile = "data/repdata-data_StormData.csv.bz2")
bunzip2("data/repdata-data_StormData.csv.bz2", overwrite=T, remove=F)
}
If the data already exists in the working environment, we do not need to load it again. Otherwise, we read the csv file.
if (!"stormData" %in% ls()) {
stormData <- read.csv("data/repdata-data_StormData.csv")
}
dim(stormData)
## [1] 902297 37
head(stormData, n = 2)
## STATE__ BGN_DATE BGN_TIME TIME_ZONE COUNTY COUNTYNAME STATE
## 1 1 4/18/1950 0:00:00 0130 CST 97 MOBILE AL
## 2 1 4/18/1950 0:00:00 0145 CST 3 BALDWIN AL
## EVTYPE BGN_RANGE BGN_AZI BGN_LOCATI END_DATE END_TIME COUNTY_END
## 1 TORNADO 0 0
## 2 TORNADO 0 0
## COUNTYENDN END_RANGE END_AZI END_LOCATI LENGTH WIDTH F MAG FATALITIES
## 1 NA 0 14 100 3 0 0
## 2 NA 0 2 150 2 0 0
## INJURIES PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP WFO STATEOFFIC ZONENAMES
## 1 15 25.0 K 0
## 2 0 2.5 K 0
## LATITUDE LONGITUDE LATITUDE_E LONGITUDE_ REMARKS REFNUM
## 1 3040 8812 3051 8806 1
## 2 3042 8755 0 0 2
There are 902297 rows and 37 columns in total. The events in the database start in the year 1950 and end in November 2011. In the earlier years of the database there are generally fewer events recorded, most likely due to a lack of reliable/complete records.
if (dim(stormData)[2] == 37) {
stormData$year <- as.numeric(format(as.Date(stormData$BGN_DATE, format = "%m/%d/%Y %H:%M:%S"), "%Y"))
}
hist(stormData$year, breaks = 30)
We make a copy of the data so we can manipulate it.
storm <- stormData
dim(storm)
## [1] 902297 38
There are 902297 rows and 38 columns in total, same as stormData.
In this section, we check the number of fatalities and injuries that are caused by the severe weather events. We would like to get the first 15 most severe types of weather events.
sortHelper <- function(fieldName, top = 15, dataset = stormData) {
index <- which(colnames(dataset) == fieldName)
field <- aggregate(dataset[, index], by = list(dataset$EVTYPE), FUN = "sum")
names(field) <- c("EVTYPE", fieldName)
field <- plyr::arrange(field, field[, 2], decreasing = T)
field <- head(field, n = top)
field <- within(field, EVTYPE <- factor(x = EVTYPE, levels = field$EVTYPE))
return(field)
}
fatalities <- sortHelper("FATALITIES", dataset = storm)
injuries <- sortHelper("INJURIES", dataset = storm)
We will convert the property damage and crop damage data into comparable numerical forms using the definition of the units described in the code book (Storm Events. Both PROPDMGEXP and CROPDMGEXP columns record a multiplier for each observation where we have Hundred (H), Thousand (K), Million (M) and Billion (B).
convertHelper <- function(dataset = storm, fieldName, newFieldName) {
totalLen <- dim(dataset)[2]
index <- which(colnames(dataset) == fieldName)
dataset[, index] <- as.character(dataset[, index])
logic <- !is.na(toupper(dataset[, index]))
dataset[logic & toupper(dataset[, index]) == "B", index] <- "9"
dataset[logic & toupper(dataset[, index]) == "M", index] <- "6"
dataset[logic & toupper(dataset[, index]) == "K", index] <- "3"
dataset[logic & toupper(dataset[, index]) == "H", index] <- "2"
dataset[logic & toupper(dataset[, index]) == "", index] <- "0"
dataset[, index] <- as.numeric(dataset[, index])
dataset[is.na(dataset[, index]), index] <- 0
dataset <- cbind(dataset, dataset[, index - 1] * 10^dataset[, index])
names(dataset)[totalLen + 1] <- newFieldName
return(dataset)
}
storm <- convertHelper(storm, "PROPDMGEXP", "propertyDamage")
## Warning in convertHelper(storm, "PROPDMGEXP", "propertyDamage"): NAs
## introduced by coercion
storm <- convertHelper(storm, "CROPDMGEXP", "cropDamage")
## Warning in convertHelper(storm, "CROPDMGEXP", "cropDamage"): NAs introduced
## by coercion
names(storm)
## [1] "STATE__" "BGN_DATE" "BGN_TIME" "TIME_ZONE"
## [5] "COUNTY" "COUNTYNAME" "STATE" "EVTYPE"
## [9] "BGN_RANGE" "BGN_AZI" "BGN_LOCATI" "END_DATE"
## [13] "END_TIME" "COUNTY_END" "COUNTYENDN" "END_RANGE"
## [17] "END_AZI" "END_LOCATI" "LENGTH" "WIDTH"
## [21] "F" "MAG" "FATALITIES" "INJURIES"
## [25] "PROPDMG" "PROPDMGEXP" "CROPDMG" "CROPDMGEXP"
## [29] "WFO" "STATEOFFIC" "ZONENAMES" "LATITUDE"
## [33] "LONGITUDE" "LATITUDE_E" "LONGITUDE_" "REMARKS"
## [37] "REFNUM" "year" "propertyDamage" "cropDamage"
options(scipen=999)
property <- sortHelper("propertyDamage", dataset = storm)
crop <- sortHelper("cropDamage", dataset = storm)
As for the impact on public health, we have got two sorted lists of severe weather events below by the number of people badly affected.
fatalities
## EVTYPE FATALITIES
## 1 TORNADO 5633
## 2 EXCESSIVE HEAT 1903
## 3 FLASH FLOOD 978
## 4 HEAT 937
## 5 LIGHTNING 816
## 6 TSTM WIND 504
## 7 FLOOD 470
## 8 RIP CURRENT 368
## 9 HIGH WIND 248
## 10 AVALANCHE 224
## 11 WINTER STORM 206
## 12 RIP CURRENTS 204
## 13 HEAT WAVE 172
## 14 EXTREME COLD 160
## 15 THUNDERSTORM WIND 133
injuries
## EVTYPE INJURIES
## 1 TORNADO 91346
## 2 TSTM WIND 6957
## 3 FLOOD 6789
## 4 EXCESSIVE HEAT 6525
## 5 LIGHTNING 5230
## 6 HEAT 2100
## 7 ICE STORM 1975
## 8 FLASH FLOOD 1777
## 9 THUNDERSTORM WIND 1488
## 10 HAIL 1361
## 11 WINTER STORM 1321
## 12 HURRICANE/TYPHOON 1275
## 13 HIGH WIND 1137
## 14 HEAVY SNOW 1021
## 15 WILDFIRE 911
And the following is a pair of graphs of total fatalities and total injuries affected by these severe weather events.
fatalitiesPlot <- qplot(EVTYPE, data = fatalities, weight = FATALITIES, geom = "bar") +
scale_y_continuous("Number of Fatalities") +
theme(axis.text.x = element_text(angle = 45,
hjust = 1)) + xlab("Severe Weather Type") +
ggtitle("Total Fatalities by Severe Weather\n Events in the U.S.\n from 1950 - 2011")
injuriesPlot <- qplot(EVTYPE, data = injuries, weight = INJURIES, geom = "bar") +
scale_y_continuous("Number of Injuries") +
theme(axis.text.x = element_text(angle = 45,
hjust = 1)) + xlab("Severe Weather Type") +
ggtitle("Total Injuries by Severe Weather\n Events in the U.S.\n from 1950 - 2011")
grid.arrange(fatalitiesPlot, injuriesPlot, ncol = 2)
Based on the above histograms, we find that excessive heat and tornado cause most fatalities; tornato causes most injuries in the United States from 1950 to 2011.
As for the impact on economy, we have got two sorted lists below by the amount of money cost by damages.
property
## EVTYPE propertyDamage
## 1 FLOOD 144657709807
## 2 HURRICANE/TYPHOON 69305840000
## 3 TORNADO 56947380677
## 4 STORM SURGE 43323536000
## 5 FLASH FLOOD 16822673979
## 6 HAIL 15735267513
## 7 HURRICANE 11868319010
## 8 TROPICAL STORM 7703890550
## 9 WINTER STORM 6688497251
## 10 HIGH WIND 5270046295
## 11 RIVER FLOOD 5118945500
## 12 WILDFIRE 4765114000
## 13 STORM SURGE/TIDE 4641188000
## 14 TSTM WIND 4484928495
## 15 ICE STORM 3944927860
crop
## EVTYPE cropDamage
## 1 DROUGHT 13972566000
## 2 FLOOD 5661968450
## 3 RIVER FLOOD 5029459000
## 4 ICE STORM 5022113500
## 5 HAIL 3025954473
## 6 HURRICANE 2741910000
## 7 HURRICANE/TYPHOON 2607872800
## 8 FLASH FLOOD 1421317100
## 9 EXTREME COLD 1292973000
## 10 FROST/FREEZE 1094086000
## 11 HEAVY RAIN 733399800
## 12 TROPICAL STORM 678346000
## 13 HIGH WIND 638571300
## 14 TSTM WIND 554007350
## 15 EXCESSIVE HEAT 492402000
The following is are graphs of total property damage and total crop damage affected by these severe weather events.
propertyPlot <- qplot(EVTYPE, data = property, weight = propertyDamage, geom = "bar") +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) + scale_y_continuous("Property Damage in US dollars")+
xlab("Severe Weather Type") + ggtitle("Total Property Damage by\n Severe Weather Events in\n the U.S. from 1950 - 2011")
cropPlot<- qplot(EVTYPE, data = crop, weight = cropDamage, geom = "bar") +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) + scale_y_continuous("Crop Damage in US dollars") +
xlab("Severe Weather Type") + ggtitle("Total Crop Damage by \nSevere Weather Events in\n the U.S. from 1950 - 2011")
grid.arrange(propertyPlot, cropPlot, ncol = 2)
Based on the histograms above, we find that flood and hurricane/typhoon cause most property damage; drought and flood causes most crop damage in the United States from 1950 to 2011.
From these data, we found that excessive heat and tornado are most harmful with respect to population health, while flood, drought, and hurricane/typhoon have the greatest economic impact.