IPV and Cognitive Tests --depression as continuous instead of dichotomous

Trails A Regression Model 2 (with CES)

load("~/Desktop/Megan/Research/IPV and Cognition Paper/IPV R Output/IPVandCognitionDataSet2.rda")

library(lme4)
## Loading required package: Matrix
library(lmerTest)
## KernSmooth 2.23 loaded
## Copyright M. P. Wand 1997-2009
## 
## Attaching package: 'lmerTest'
## 
## The following object is masked from 'package:lme4':
## 
##     lmer
## 
## The following object is masked from 'package:stats':
## 
##     step

(mm2 = lmer(TrailsAtestSec ~ (Age + IPVstatus + Sex + Race + w1CES)^5 + (Age | 
    HNDid) + (1 | subclass), data = IPVandCognitionDataSet2, REML = F))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by maximum likelihood ['merModLmerTest']
## Formula: TrailsAtestSec ~ (Age + IPVstatus + Sex + Race + w1CES)^5 + (Age |      HNDid) + (1 | subclass) 
##    Data: IPVandCognitionDataSet2 
##      AIC      BIC   logLik deviance 
##    984.2   1089.2   -455.1    910.2 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 7.212        
##           Age         0.139    1.00
##  subclass (Intercept) 3.885        
##  Residual             6.648        
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## Fixed Effects:
##                           (Intercept)  
##                               21.6283  
##                                   Age  
##                               -0.4689  
##                            IPVstatus1  
##                               25.3160  
##                                SexMen  
##                               18.5360  
##                             RaceAfrAm  
##                               12.3838  
##                                 w1CES  
##                                0.8157  
##                        Age:IPVstatus1  
##                                2.6662  
##                            Age:SexMen  
##                                2.1147  
##                         Age:RaceAfrAm  
##                                0.5083  
##                             Age:w1CES  
##                                0.0748  
##                     IPVstatus1:SexMen  
##                              -17.7044  
##                  IPVstatus1:RaceAfrAm  
##                               -1.6308  
##                      IPVstatus1:w1CES  
##                               -1.8357  
##                      SexMen:RaceAfrAm  
##                              -16.6838  
##                          SexMen:w1CES  
##                               -1.5506  
##                       RaceAfrAm:w1CES  
##                               -0.5726  
##                 Age:IPVstatus1:SexMen  
##                               -3.7964  
##              Age:IPVstatus1:RaceAfrAm  
##                                0.0250  
##                  Age:IPVstatus1:w1CES  
##                               -0.1873  
##                  Age:SexMen:RaceAfrAm  
##                               -2.2664  
##                      Age:SexMen:w1CES  
##                               -0.1651  
##                   Age:RaceAfrAm:w1CES  
##                               -0.0408  
##           IPVstatus1:SexMen:RaceAfrAm  
##                               20.8611  
##               IPVstatus1:SexMen:w1CES  
##                                2.1978  
##            IPVstatus1:RaceAfrAm:w1CES  
##                                1.1868  
##                SexMen:RaceAfrAm:w1CES  
##                                1.6628  
##       Age:IPVstatus1:SexMen:RaceAfrAm  
##                                0.6502  
##           Age:IPVstatus1:SexMen:w1CES  
##                                0.3061  
##        Age:IPVstatus1:RaceAfrAm:w1CES  
##                                0.1182  
##            Age:SexMen:RaceAfrAm:w1CES  
##                                0.2271  
##     IPVstatus1:SexMen:RaceAfrAm:w1CES  
##                               -2.6166  
## Age:IPVstatus1:SexMen:RaceAfrAm:w1CES  
##                               -0.2150

(st = step(mm2))
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: 
##  model has been refitted with REML=TRUE 
## 
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Random term (Age | HNDid) was eliminated because of having correlation +-1 or NaN
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Random term (Age + 0 | HNDid) was eliminated because of standard deviation being equal to 0
## 
## Random effects:
##                Chi.sq Chi.DF elim.num p.value
## (1 | subclass)   0.70      1        1  0.4015
## (1 | HNDid)     24.42      1     kept       0
## 
## Fixed effects:
##                                 Sum Sq   Mean Sq NumDF  DenDF F.value
## Age:IPVstatus:Sex:Race:w1CES   10.7003   10.7003     1  58.81  0.2133
## IPVstatus:Sex:Race:w1CES        0.1914    0.1914     1  38.69  0.0040
## Age:IPVstatus:Sex:w1CES        53.9718   53.9718     1  83.64  0.2707
## Age:IPVstatus:Sex:Race          0.9329    0.9329     1  96.94  0.2056
## IPVstatus:Sex:Race              1.7437    1.7437     1  38.56  0.0527
## Age:IPVstatus:Race:w1CES        5.7614    5.7614     1  98.44  0.6798
## IPVstatus:Race:w1CES            3.6523    3.6523     1  46.78  0.0051
## IPVstatus:Sex:w1CES            57.7257   57.7257     1  44.89  1.2791
## Age:IPVstatus:Sex              12.0212   12.0212     1 101.96  2.5214
## IPVstatus:Sex                  50.8982   50.8982     1  44.61  1.1785
## Age:IPVstatus:Race            116.3128  116.3128     1 102.78  3.1307
## IPVstatus:Race                  1.8013    1.8013     1  46.02  0.0818
## Age                          1205.2279 1205.2279     1 105.83  7.6064
## IPVstatus                      28.1889   28.1889     1  81.41  3.7944
## Sex                             4.0537    4.0537     1  78.27  1.1666
## Race                          175.4842  175.4842     1  75.90  0.0673
## w1CES                           1.0369    1.0369     1  84.58  0.8123
## Age:IPVstatus                 127.9319  127.9319     1 105.01  4.8366
## Age:Sex                         5.8498    5.8498     1 105.41  0.9383
## Age:Race                       30.5380   30.5380     1 104.84  2.0633
## Age:w1CES                       0.0098    0.0098     1 105.23  0.4171
## IPVstatus:w1CES                 1.0402    1.0402     1  83.45  2.5074
## Sex:Race                        0.2560    0.2560     1  80.10  1.2122
## Sex:w1CES                       5.9037    5.9037     1  83.77  1.4535
## Race:w1CES                      1.8604    1.8604     1  82.65  3.5868
## Age:IPVstatus:w1CES           282.1336  282.1336     1 105.14  4.0643
## Age:Sex:Race                    0.9270    0.9270     1 105.89  1.8955
## Age:Sex:w1CES                  42.8070   42.8070     1 104.78  0.9814
## Age:Race:w1CES                226.2313  226.2313     1 105.63  6.1362
## Sex:Race:w1CES                  3.9559    3.9559     1  84.05  2.4766
## Age:Sex:Race:w1CES            199.0480  199.0480     1 104.47  4.0548
##                              elim.num Pr(>F)
## Age:IPVstatus:Sex:Race:w1CES        1 0.6459
## IPVstatus:Sex:Race:w1CES            2 0.9502
## Age:IPVstatus:Sex:w1CES             3 0.6042
## Age:IPVstatus:Sex:Race              4 0.6513
## IPVstatus:Sex:Race                  5 0.8197
## Age:IPVstatus:Race:w1CES            6 0.4116
## IPVstatus:Race:w1CES                7 0.9435
## IPVstatus:Sex:w1CES                 8 0.2641
## Age:IPVstatus:Sex                   9 0.1154
## IPVstatus:Sex                      10 0.2835
## Age:IPVstatus:Race                 11 0.0798
## IPVstatus:Race                     12 0.7761
## Age                              kept 0.0069
## IPVstatus                        kept 0.0549
## Sex                              kept 0.2834
## Race                             kept 0.7961
## w1CES                            kept 0.3700
## Age:IPVstatus                    kept 0.0301
## Age:Sex                          kept 0.3349
## Age:Race                         kept 0.1539
## Age:w1CES                        kept 0.5198
## IPVstatus:w1CES                  kept 0.1171
## Sex:Race                         kept 0.2742
## Sex:w1CES                        kept 0.2314
## Race:w1CES                       kept 0.0617
## Age:IPVstatus:w1CES              kept 0.0463
## Age:Sex:Race                     kept 0.1715
## Age:Sex:w1CES                    kept 0.3241
## Age:Race:w1CES                   kept 0.0148
## Sex:Race:w1CES                   kept 0.1193
## Age:Sex:Race:w1CES               kept 0.0466
## 
## Least squares means:
##                       IPVstatus  Sex Race Estimate Standard Error   DF
## IPVstatus  0                1.0   NA   NA    30.70           1.77 47.5
## IPVstatus  1                2.0   NA   NA    33.82           2.49 46.5
## Sex  Women                   NA  2.0   NA    32.20           2.08 47.0
## Sex  Men                     NA  1.0   NA    32.33           2.18 47.7
## Race  White                  NA   NA  2.0    29.64           2.37 46.2
## Race  AfrAm                  NA   NA  1.0    34.88           1.90 49.2
## Sex:Race  Women White        NA  2.0  2.0    29.03           3.28 45.9
## Sex:Race  Men White          NA  1.0  2.0    30.25           3.36 46.2
## Sex:Race  Women AfrAm        NA  2.0  1.0    35.36           2.48 48.2
## Sex:Race  Men AfrAm          NA  1.0  1.0    34.40           2.70 51.1
##                       t-value Lower CI Upper CI p-value
## IPVstatus  0            17.35     27.1     34.3  <2e-16
## IPVstatus  1            13.60     28.8     38.8  <2e-16
## Sex  Women              15.50     28.0     36.4  <2e-16
## Sex  Men                14.86     28.0     36.7  <2e-16
## Race  White             12.53     24.9     34.4  <2e-16
## Race  AfrAm             18.32     31.1     38.7  <2e-16
## Sex:Race  Women White    8.85     22.4     35.6  <2e-16
## Sex:Race  Men White      9.02     23.5     37.0  <2e-16
## Sex:Race  Women AfrAm   14.28     30.4     40.3  <2e-16
## Sex:Race  Men AfrAm     12.72     29.0     39.8  <2e-16
## 
##  Differences of LSMEANS:
##                                    Estimate Standard Error   DF t-value
## IPVstatus 0-1                          -3.1          2.995 46.1   -1.04
## Sex Women-Men                          -0.1          2.906 47.3   -0.04
## Race White-AfrAm                       -5.2          2.967 47.2   -1.76
## Sex:Race  Women White- Men White       -1.2          4.650 46.0   -0.26
## Sex:Race  Women White- Women AfrAm     -6.3          4.063 46.4   -1.56
## Sex:Race  Women White- Men AfrAm       -5.4          4.221 47.8   -1.27
## Sex:Race  Men White- Women AfrAm       -5.1          4.084 46.6   -1.25
## Sex:Race  Men White- Men AfrAm         -4.1          4.268 48.4   -0.97
## Sex:Race  Women AfrAm- Men AfrAm        1.0          3.519 50.3    0.27
##                                    Lower CI Upper CI p-value
## IPVstatus 0-1                         -9.14    2.914    0.30
## Sex Women-Men                         -5.97    5.716    0.96
## Race White-AfrAm                     -11.20    0.735    0.08
## Sex:Race  Women White- Men White     -10.58    8.139    0.79
## Sex:Race  Women White- Women AfrAm   -14.50    1.853    0.13
## Sex:Race  Women White- Men AfrAm     -13.85    3.126    0.21
## Sex:Race  Men White- Women AfrAm     -13.32    3.114    0.22
## Sex:Race  Men White- Men AfrAm       -12.72    4.437    0.34
## Sex:Race  Women AfrAm- Men AfrAm      -6.11    8.029    0.79
## 
## Final model:
## lme4::lmer(formula = TrailsAtestSec ~ Age + IPVstatus + Sex + 
##     Race + w1CES + (1 | HNDid) + Age:IPVstatus + Age:Sex + Age:Race + 
##     Age:w1CES + IPVstatus:w1CES + Sex:Race + Sex:w1CES + Race:w1CES + 
##     Age:IPVstatus:w1CES + Age:Sex:Race + Age:Sex:w1CES + Age:Race:w1CES + 
##     Sex:Race:w1CES + Age:Sex:Race:w1CES, data = IPVandCognitionDataSet2, 
##     REML = reml, contrasts = l)

Re-run suggested Trails A final Model 2

(mm2 = lmer(TrailsAtestSec ~ Age + IPVstatus + Sex + Race + w1CES + (Age | HNDid) + 
    (1 | subclass) + Age:IPVstatus + Age:Sex + Age:Race + Age:w1CES + IPVstatus:w1CES + 
    Sex:Race + Sex:w1CES + Race:w1CES + Age:IPVstatus:w1CES + Age:Sex:Race + 
    Age:Sex:w1CES + Age:Race:w1CES + Sex:Race:w1CES + Age:Sex:Race:w1CES, data = IPVandCognitionDataSet2, 
    REML = F))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by maximum likelihood ['merModLmerTest']
## Formula: TrailsAtestSec ~ Age + IPVstatus + Sex + Race + w1CES + (Age |      HNDid) + (1 | subclass) + Age:IPVstatus + Age:Sex + Age:Race +      Age:w1CES + IPVstatus:w1CES + Sex:Race + Sex:w1CES + Race:w1CES +      Age:IPVstatus:w1CES + Age:Sex:Race + Age:Sex:w1CES + Age:Race:w1CES +      Sex:Race:w1CES + Age:Sex:Race:w1CES 
##    Data: IPVandCognitionDataSet2 
##      AIC      BIC   logLik deviance 
##    973.1   1044.0   -461.6    923.1 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 8.035975     
##           Age         0.066129 1.00
##  subclass (Intercept) 0.000559     
##  Residual             6.976433     
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## Fixed Effects:
##                (Intercept)                         Age  
##                    24.8667                     -0.1279  
##                 IPVstatus1                      SexMen  
##                    16.4604                     17.0801  
##                  RaceAfrAm                       w1CES  
##                     7.1867                      0.4169  
##             Age:IPVstatus1                  Age:SexMen  
##                     1.5634                      1.6398  
##              Age:RaceAfrAm                   Age:w1CES  
##                     0.0420                      0.0426  
##           IPVstatus1:w1CES            SexMen:RaceAfrAm  
##                    -0.7097                    -17.3121  
##               SexMen:w1CES             RaceAfrAm:w1CES  
##                    -1.2214                      0.0825  
##       Age:IPVstatus1:w1CES        Age:SexMen:RaceAfrAm  
##                    -0.0793                     -1.9371  
##           Age:SexMen:w1CES         Age:RaceAfrAm:w1CES  
##                    -0.1327                      0.0169  
##     SexMen:RaceAfrAm:w1CES  Age:SexMen:RaceAfrAm:w1CES  
##                     1.3315                      0.1726

summary(mm2)
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## [1] "Asymptotic covariance matrix A is not positive!"
## Linear mixed model fit by maximum likelihood ['merModLmerTest']
## Formula: TrailsAtestSec ~ Age + IPVstatus + Sex + Race + w1CES + (Age |      HNDid) + (1 | subclass) + Age:IPVstatus + Age:Sex + Age:Race +      Age:w1CES + IPVstatus:w1CES + Sex:Race + Sex:w1CES + Race:w1CES +      Age:IPVstatus:w1CES + Age:Sex:Race + Age:Sex:w1CES + Age:Race:w1CES +      Sex:Race:w1CES + Age:Sex:Race:w1CES 
##    Data: IPVandCognitionDataSet2 
## 
##      AIC      BIC   logLik deviance 
##    973.1   1044.0   -461.6    923.1 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  HNDid    (Intercept) 6.46e+01 8.035975     
##           Age         4.37e-03 0.066129 1.00
##  subclass (Intercept) 3.12e-07 0.000559     
##  Residual             4.87e+01 6.976433     
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## 
## Fixed effects:
##                            Estimate Std. Error       df t value Pr(>|t|)
## (Intercept)                 24.8667     9.0897  19.6000    2.74    0.013
## Age                         -0.1279     0.6786  42.8000   -0.19    0.851
## IPVstatus1                  16.4604     8.3924  28.3000    1.96    0.060
## SexMen                      17.0801    10.6771  19.8000    1.60    0.125
## RaceAfrAm                    7.1867    10.3802  28.4000    0.69    0.494
## w1CES                        0.4169     0.4710  34.5000    0.89    0.382
## Age:IPVstatus1               1.5634     0.7341  74.4000    2.13    0.037
## Age:SexMen                   1.6398     0.8914  53.5000    1.84    0.071
## Age:RaceAfrAm                0.0420     0.8600  72.2000    0.05    0.961
## Age:w1CES                    0.0426     0.0368  80.7000    1.16    0.251
## IPVstatus1:w1CES            -0.7097     0.4485  28.2000   -1.58    0.125
## SexMen:RaceAfrAm           -17.3121    13.6093  29.8000   -1.27    0.213
## SexMen:w1CES                -1.2214     0.6231  33.5000   -1.96    0.058
## RaceAfrAm:w1CES              0.0825     0.5361  40.8000    0.15    0.878
## Age:IPVstatus1:w1CES        -0.0793     0.0406  72.0000   -1.95    0.055
## Age:SexMen:RaceAfrAm        -1.9371     1.2468  88.8000   -1.55    0.124
## Age:SexMen:w1CES            -0.1327     0.0589 107.2000   -2.25    0.026
## Age:RaceAfrAm:w1CES          0.0169     0.0467  87.0000    0.36    0.718
## SexMen:RaceAfrAm:w1CES       1.3315     0.7438  37.3000    1.79    0.082
## Age:SexMen:RaceAfrAm:w1CES   0.1726     0.0781 113.0000    2.21    0.029
## 
## Correlation of Fixed Effects:
##             (Intr) Age    IPVst1 SexMen RcAfrA w1CES  Ag:IPV1 Ag:SxM
## Age          0.784                                                  
## IPVstatus1  -0.291 -0.202                                           
## SexMen      -0.821 -0.649  0.138                                    
## RaceAfrAm   -0.754 -0.584 -0.142  0.647                             
## w1CES       -0.887 -0.722  0.290  0.734  0.623                      
## Ag:IPVstts1 -0.148 -0.236  0.788  0.044 -0.207  0.163               
## Age:SexMen  -0.584 -0.737  0.062  0.694  0.459  0.539  0.055        
## Age:RcAfrAm -0.532 -0.665 -0.211  0.466  0.793  0.447 -0.255   0.526
## Age:w1CES   -0.706 -0.865  0.209  0.587  0.479  0.829  0.251   0.642
## IPVst1:1CES  0.277  0.209 -0.891 -0.163  0.218 -0.344 -0.713  -0.096
## SxMn:RcAfrA  0.556  0.434  0.168 -0.728 -0.772 -0.456  0.198  -0.501
## SexMn:w1CES  0.661  0.541 -0.189 -0.855 -0.473 -0.748 -0.104  -0.642
## RcAfrA:1CES  0.619  0.495  0.255 -0.541 -0.875 -0.657  0.295  -0.397
## A:IPV1:1CES  0.143  0.243 -0.676 -0.068  0.275 -0.196 -0.868  -0.109
## Ag:SxMn:RAA  0.358  0.446  0.196 -0.460 -0.558 -0.293  0.242  -0.677
## Ag:SxM:1CES  0.439  0.535 -0.113 -0.567 -0.303 -0.517 -0.129  -0.846
## Ag:RAA:1CES  0.442  0.526  0.292 -0.395 -0.689 -0.486  0.329  -0.427
## SM:RAA:1CES -0.445 -0.360 -0.202  0.651  0.613  0.486 -0.224   0.492
## A:SM:RAA:1C -0.264 -0.318 -0.202  0.392  0.394  0.295 -0.234   0.609
##             Ag:RAA A:1CES IPV1:1 SxM:RAA SM:1CE RAA:1C A:IPV1: Ag:SM:RAA
## Age                                                                     
## IPVstatus1                                                              
## SexMen                                                                  
## RaceAfrAm                                                               
## w1CES                                                                   
## Ag:IPVstts1                                                             
## Age:SexMen                                                              
## Age:RcAfrAm                                                             
## Age:w1CES    0.515                                                      
## IPVst1:1CES  0.276 -0.267                                               
## SxMn:RcAfrA -0.618 -0.351 -0.223                                        
## SexMn:w1CES -0.342 -0.622  0.236  0.587                                 
## RcAfrA:1CES -0.710 -0.530 -0.348  0.684   0.501                         
## A:IPV1:1CES  0.314 -0.329  0.778 -0.252   0.134 -0.383                  
## Ag:SxMn:RAA -0.703 -0.347 -0.241  0.727   0.394  0.505 -0.254           
## Ag:SxM:1CES -0.327 -0.619  0.155  0.379   0.724  0.336  0.185   0.540   
## Ag:RAA:1CES -0.873 -0.567 -0.368  0.544   0.373  0.789 -0.390   0.621   
## SM:RAA:1CES  0.496  0.397  0.223 -0.853  -0.741 -0.698  0.247  -0.647   
## A:SM:RAA:1C  0.505  0.365  0.208 -0.565  -0.481 -0.447  0.186  -0.852   
##             A:SM:1 A:RAA: SM:RAA:
## Age                              
## IPVstatus1                       
## SexMen                           
## RaceAfrAm                        
## w1CES                            
## Ag:IPVstts1                      
## Age:SexMen                       
## Age:RcAfrAm                      
## Age:w1CES                        
## IPVst1:1CES                      
## SxMn:RcAfrA                      
## SexMn:w1CES                      
## RcAfrA:1CES                      
## A:IPV1:1CES                      
## Ag:SxMn:RAA                      
## Ag:SxM:1CES                      
## Ag:RAA:1CES  0.360               
## SM:RAA:1CES -0.534 -0.550        
## A:SM:RAA:1C -0.698 -0.581  0.688

plot(st)

plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2


plot(mm2)

plot of chunk unnamed-chunk-2

Trails B Regression Model 2 (with CES)

load("~/Desktop/Megan/Research/IPV and Cognition Paper/IPV R Output/IPVandCognitionDataSet2.rda")

library(lme4)
library(lmerTest)

(mm2 = lmer(TrailsBtestSec ~ (Age + IPVstatus + Sex + Race + w1CES)^5 + (Age | 
    HNDid) + (1 | subclass), data = IPVandCognitionDataSet2, REML = F))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by maximum likelihood ['merModLmerTest']
## Formula: TrailsBtestSec ~ (Age + IPVstatus + Sex + Race + w1CES)^5 + (Age |      HNDid) + (1 | subclass) 
##    Data: IPVandCognitionDataSet2 
##      AIC      BIC   logLik deviance 
##   1590.6   1695.6   -758.3   1516.6 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 1.18e+02     
##           Age         4.13e+00 1.00
##  subclass (Intercept) 7.20e-04     
##  Residual             6.99e+01     
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## Fixed Effects:
##                           (Intercept)  
##                              9.31e+01  
##                                   Age  
##                              2.15e+00  
##                            IPVstatus1  
##                              2.98e+01  
##                                SexMen  
##                              1.91e+01  
##                             RaceAfrAm  
##                             -3.11e+01  
##                                 w1CES  
##                             -8.29e-01  
##                        Age:IPVstatus1  
##                              3.33e+00  
##                            Age:SexMen  
##                              6.34e+00  
##                         Age:RaceAfrAm  
##                             -3.18e+00  
##                             Age:w1CES  
##                             -4.99e-02  
##                     IPVstatus1:SexMen  
##                              7.39e+02  
##                  IPVstatus1:RaceAfrAm  
##                             -1.46e+00  
##                      IPVstatus1:w1CES  
##                             -1.89e+00  
##                      SexMen:RaceAfrAm  
##                             -1.11e+01  
##                          SexMen:w1CES  
##                              3.90e-02  
##                       RaceAfrAm:w1CES  
##                              1.19e+01  
##                 Age:IPVstatus1:SexMen  
##                              2.94e+01  
##              Age:IPVstatus1:RaceAfrAm  
##                             -5.49e-01  
##                  Age:IPVstatus1:w1CES  
##                             -1.99e-01  
##                  Age:SexMen:RaceAfrAm  
##                             -1.09e+01  
##                      Age:SexMen:w1CES  
##                             -3.11e-01  
##                   Age:RaceAfrAm:w1CES  
##                              5.04e-01  
##           IPVstatus1:SexMen:RaceAfrAm  
##                             -1.86e+03  
##               IPVstatus1:SexMen:w1CES  
##                             -4.16e+01  
##            IPVstatus1:RaceAfrAm:w1CES  
##                             -9.40e+00  
##                SexMen:RaceAfrAm:w1CES  
##                              1.06e+00  
##       Age:IPVstatus1:SexMen:RaceAfrAm  
##                             -1.20e+02  
##           Age:IPVstatus1:SexMen:w1CES  
##                             -1.45e+00  
##        Age:IPVstatus1:RaceAfrAm:w1CES  
##                             -2.09e-01  
##            Age:SexMen:RaceAfrAm:w1CES  
##                              1.36e+00  
##     IPVstatus1:SexMen:RaceAfrAm:w1CES  
##                              1.06e+02  
## Age:IPVstatus1:SexMen:RaceAfrAm:w1CES  
##                              4.97e+00

(st = step(mm2))
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: 
##  model has been refitted with REML=TRUE 
## 
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## 
## Random effects:
##                Chi.sq Chi.DF elim.num p.value
## (1 | subclass)   0.00      1        1  1.0000
## (Age | HNDid)    3.45      1     kept  0.0634
## 
## Fixed effects:
##                                Sum Sq  Mean Sq NumDF DenDF F.value
## Age:IPVstatus:Sex:Race:w1CES  1998.40  1998.40     1 49.34  0.4120
## Age:IPVstatus:Race:w1CES      1510.63  1510.63     1 55.46  0.0058
## Age:IPVstatus:Sex:w1CES       5866.58  5866.58     1 65.60  0.6973
## Age:IPVstatus:w1CES           4788.66  4788.66     1 56.77  0.2132
## Age:IPVstatus:Sex:Race        4234.38  4234.38     1 44.07  2.4167
## Age:IPVstatus:Sex              279.08   279.08     1 54.00  0.2931
## Age:Sex:Race:w1CES            6607.93  6607.93     1 59.71  1.9093
## Age:Sex:Race                  1845.00  1845.00     1 47.60  0.0989
## Age:Sex:w1CES                 2548.47  2548.47     1 65.23  1.8175
## Age:Sex                       3864.86  3864.86     1 52.68  0.4720
## Age:IPVstatus:Race           10802.23 10802.23     1 53.15  2.4420
## Age:IPVstatus                  892.52   892.52     1 58.23  0.7180
## Age:Race:w1CES               12774.17 12774.17     1 62.11  2.8388
## Age:Race                        40.77    40.77     1 48.89  0.0624
## Age:w1CES                     1502.17  1502.17     1 66.78  0.6328
## IPVstatus:Sex:Race:w1CES     25684.26 25684.26     1 41.35  3.4026
## Sex:Race:w1CES                1760.48  1760.48     1 43.73  0.0056
## IPVstatus:Sex:w1CES           3741.90  3741.90     1 41.85  0.1719
## Sex:w1CES                     1188.03  1188.03     1 45.98  0.0323
## IPVstatus:Race:w1CES            12.59    12.59     1 47.33  0.1995
## IPVstatus:w1CES               1350.12  1350.12     1 49.15  0.6785
## Race:w1CES                    3622.05  3622.05     1 48.07  0.5723
## w1CES                        10212.22 10212.22     1 49.97  0.8420
## IPVstatus:Sex:Race            7417.24  7417.24     1 39.71  1.5848
## IPVstatus:Race                1163.12  1163.12     1 47.38  0.0220
## Sex:Race                       228.89   228.89     1 48.43  0.2489
## Race                         23386.60 23386.60     1 49.23  3.5353
## Age                          21937.82 21937.82     1 53.75  4.8981
## IPVstatus                     3114.98  3114.98     1 55.75  1.8083
## Sex                           6494.58  6494.58     1 55.66  4.6249
## IPVstatus:Sex                45100.05 45100.05     1 56.35  9.4992
##                              elim.num Pr(>F)
## Age:IPVstatus:Sex:Race:w1CES        1 0.5239
## Age:IPVstatus:Race:w1CES            2 0.9393
## Age:IPVstatus:Sex:w1CES             3 0.4067
## Age:IPVstatus:w1CES                 4 0.6460
## Age:IPVstatus:Sex:Race              5 0.1272
## Age:IPVstatus:Sex                   6 0.5904
## Age:Sex:Race:w1CES                  7 0.1722
## Age:Sex:Race                        8 0.7545
## Age:Sex:w1CES                       9 0.1823
## Age:Sex                            10 0.4951
## Age:IPVstatus:Race                 11 0.1241
## Age:IPVstatus                      12 0.4003
## Age:Race:w1CES                     13 0.0970
## Age:Race                           14 0.8037
## Age:w1CES                          15 0.4291
## IPVstatus:Sex:Race:w1CES           16 0.0723
## Sex:Race:w1CES                     17 0.9409
## IPVstatus:Sex:w1CES                18 0.6805
## Sex:w1CES                          19 0.8581
## IPVstatus:Race:w1CES               20 0.6572
## IPVstatus:w1CES                    21 0.4141
## Race:w1CES                         22 0.4531
## w1CES                              23 0.3632
## IPVstatus:Sex:Race                 24 0.2154
## IPVstatus:Race                     25 0.8827
## Sex:Race                           26 0.6201
## Race                               27 0.0660
## Age                              kept 0.0312
## IPVstatus                        kept 0.1842
## Sex                              kept 0.0359
## IPVstatus:Sex                    kept 0.0032
## 
## Least squares means:
##                        IPVstatus  Sex Estimate Standard Error   DF t-value
## IPVstatus  0                 1.0   NA    123.1           21.8 60.1    5.64
## IPVstatus  1                 2.0   NA    171.8           30.5 60.3    5.63
## Sex  Women                    NA  2.0    108.5           24.8 60.6    4.37
## Sex  Men                      NA  1.0    186.4           28.1 60.5    6.63
## IPVstatus:Sex  0 Women       1.0  2.0    140.0           29.1 60.2    4.81
## IPVstatus:Sex  1 Women       2.0  2.0     77.0           38.9 57.4    1.98
## IPVstatus:Sex  0 Men         1.0  1.0    106.1           30.7 59.4    3.46
## IPVstatus:Sex  1 Men         2.0  1.0    266.6           46.3 58.3    5.76
##                        Lower CI Upper CI p-value
## IPVstatus  0             79.408      167  <2e-16
## IPVstatus  1            110.776      233  <2e-16
## Sex  Women               58.803      158  0.0001
## Sex  Men                130.182      243  <2e-16
## IPVstatus:Sex  0 Women   81.767      198  <2e-16
## IPVstatus:Sex  1 Women   -0.827      155  0.0524
## IPVstatus:Sex  0 Men     44.752      168  0.0010
## IPVstatus:Sex  1 Men    173.985      359  <2e-16
## 
##  Differences of LSMEANS:
##                                 Estimate Standard Error     DF t-value
## IPVstatus 0-1                      -48.7           36.2   55.7   -1.34
## Sex Women-Men                      -77.9           36.2   55.7   -2.15
## IPVstatus:Sex  0 Women- 1 Women     63.0           47.4   54.5    1.33
## IPVstatus:Sex  0 Women- 0 Men       33.9           40.9   53.5    0.83
## IPVstatus:Sex  0 Women- 1 Men     -126.6           53.5   53.1   -2.37
## IPVstatus:Sex  1 Women- 0 Men      -29.2           48.8   56.1   -0.60
## IPVstatus:Sex  1 Women- 1 Men     -189.6           59.8   57.0   -3.17
## IPVstatus:Sex  0 Men- 1 Men       -160.5           54.9   56.8   -2.93
##                                 Lower CI Upper CI p-value
## IPVstatus 0-1                     -121.3    23.87   0.184
## Sex Women-Men                     -150.5    -5.33   0.036
## IPVstatus:Sex  0 Women- 1 Women    -32.0   158.03   0.189
## IPVstatus:Sex  0 Women- 0 Men      -48.1   115.86   0.411
## IPVstatus:Sex  0 Women- 1 Men     -234.0   -19.27   0.022
## IPVstatus:Sex  1 Women- 0 Men     -127.0    68.65   0.553
## IPVstatus:Sex  1 Women- 1 Men     -309.5   -69.82   0.003
## IPVstatus:Sex  0 Men- 1 Men       -270.3   -50.63   0.005
## 
## Final model:
## lme4::lmer(formula = TrailsBtestSec ~ Age + IPVstatus + Sex + 
##     (Age | HNDid) + IPVstatus:Sex, data = IPVandCognitionDataSet2, 
##     REML = reml, contrasts = l)

Re-run the suggested final Model 2

(mm2 = lmer(TrailsBtestSec ~ Age + IPVstatus + Sex + (Age | HNDid) + (1 | subclass) + 
    IPVstatus:Sex, data = IPVandCognitionDataSet2, REML = F))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by maximum likelihood ['merModLmerTest']
## Formula: TrailsBtestSec ~ Age + IPVstatus + Sex + (Age | HNDid) + (1 |      subclass) + IPVstatus:Sex 
##    Data: IPVandCognitionDataSet2 
##      AIC      BIC   logLik deviance 
##   1571.1   1599.5   -775.6   1551.1 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 1.71e+02     
##           Age         7.93e+00 0.84
##  subclass (Intercept) 7.34e-05     
##  Residual             6.41e+01     
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## Fixed Effects:
##       (Intercept)                Age         IPVstatus1  
##            174.13               4.71             -62.95  
##            SexMen  IPVstatus1:SexMen  
##            -33.65             225.03

summary(mm2)
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Linear mixed model fit by maximum likelihood ['merModLmerTest']
## Formula: TrailsBtestSec ~ Age + IPVstatus + Sex + (Age | HNDid) + (1 |      subclass) + IPVstatus:Sex 
##    Data: IPVandCognitionDataSet2 
## 
##      AIC      BIC   logLik deviance 
##   1571.1   1599.5   -775.6   1551.1 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  HNDid    (Intercept) 2.92e+04 1.71e+02     
##           Age         6.29e+01 7.93e+00 0.84
##  subclass (Intercept) 5.39e-09 7.34e-05     
##  Residual             4.11e+03 6.41e+01     
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## 
## Fixed effects:
##                   Estimate Std. Error     df t value Pr(>|t|)
## (Intercept)         174.13      36.34  74.10    4.79  8.3e-06
## Age                   4.71       2.10  53.20    2.24    0.029
## IPVstatus1          -62.95      45.65  58.80   -1.38    0.173
## SexMen              -33.65      39.37  57.60   -0.85    0.396
## IPVstatus1:SexMen   225.03      69.84  60.70    3.22    0.002
## 
## Correlation of Fixed Effects:
##             (Intr) Age    IPVst1 SexMen
## Age          0.690                     
## IPVstatus1  -0.481 -0.093              
## SexMen      -0.552 -0.100  0.394       
## IPVstts1:SM  0.319  0.068 -0.654 -0.565

plot(st)

plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4


plot(mm2)

plot of chunk unnamed-chunk-4

Fluency (Word) Regression Model 2 (with CES)

load("~/Desktop/Megan/Research/IPV and Cognition Paper/IPV R Output/IPVandCognitionDataSet2.rda")

library(lme4)
library(lmerTest)

(mm2 = lmer(FluencyWord ~ (Age + IPVstatus + Sex + Race + w1CES)^5 + (Age | 
    HNDid) + (1 | subclass), data = IPVandCognitionDataSet2, REML = F))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by maximum likelihood ['merModLmerTest']
## Formula: FluencyWord ~ (Age + IPVstatus + Sex + Race + w1CES)^5 + (Age |      HNDid) + (1 | subclass) 
##    Data: IPVandCognitionDataSet2 
##      AIC      BIC   logLik deviance 
##    768.8    873.7   -347.4    694.8 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 0.0000       
##           Age         0.0886    NaN
##  subclass (Intercept) 0.3488       
##  Residual             3.7055       
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## Fixed Effects:
##                           (Intercept)  
##                              21.39256  
##                                   Age  
##                              -0.11507  
##                            IPVstatus1  
##                              -3.05351  
##                                SexMen  
##                              -0.56895  
##                             RaceAfrAm  
##                              -7.64522  
##                                 w1CES  
##                              -0.17010  
##                        Age:IPVstatus1  
##                               0.67930  
##                            Age:SexMen  
##                              -1.22965  
##                         Age:RaceAfrAm  
##                              -0.58368  
##                             Age:w1CES  
##                              -0.01023  
##                     IPVstatus1:SexMen  
##                             -54.38546  
##                  IPVstatus1:RaceAfrAm  
##                               9.48993  
##                      IPVstatus1:w1CES  
##                               0.46494  
##                      SexMen:RaceAfrAm  
##                               4.78263  
##                          SexMen:w1CES  
##                               0.56271  
##                       RaceAfrAm:w1CES  
##                               0.18199  
##                 Age:IPVstatus1:SexMen  
##                              -2.64774  
##              Age:IPVstatus1:RaceAfrAm  
##                               0.36136  
##                  Age:IPVstatus1:w1CES  
##                               0.00175  
##                  Age:SexMen:RaceAfrAm  
##                               1.27970  
##                      Age:SexMen:w1CES  
##                               0.10652  
##                   Age:RaceAfrAm:w1CES  
##                               0.03098  
##           IPVstatus1:SexMen:RaceAfrAm  
##                              76.40682  
##               IPVstatus1:SexMen:w1CES  
##                               4.70719  
##            IPVstatus1:RaceAfrAm:w1CES  
##                              -0.49996  
##                SexMen:RaceAfrAm:w1CES  
##                              -0.54141  
##       Age:IPVstatus1:SexMen:RaceAfrAm  
##                               3.53091  
##           Age:IPVstatus1:SexMen:w1CES  
##                               0.21451  
##        Age:IPVstatus1:RaceAfrAm:w1CES  
##                              -0.03814  
##            Age:SexMen:RaceAfrAm:w1CES  
##                              -0.09943  
##     IPVstatus1:SexMen:RaceAfrAm:w1CES  
##                              -6.22180  
## Age:IPVstatus1:SexMen:RaceAfrAm:w1CES  
##                              -0.30114

(st = step(mm2))
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: 
##  model has been refitted with REML=TRUE 
## 
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Random term (Age | HNDid) was eliminated because of having correlation +-1 or NaN
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Random term (Age + 0 | HNDid) was eliminated because of standard deviation being equal to 0
## 
## Random effects:
##                Chi.sq Chi.DF elim.num p.value
## (1 | subclass)   0.00      1        1  1.0000
## (1 | HNDid)      9.39      1     kept  0.0022
## 
## Fixed effects:
##                                Sum Sq  Mean Sq NumDF  DenDF F.value
## Age:IPVstatus:Sex:Race:w1CES  10.1930  10.1930     1  56.36  0.8777
## Age:IPVstatus:Sex:w1CES        9.3534   9.3534     1  88.88  0.0001
## Age:IPVstatus:Sex:Race         6.4755   6.4755     1  95.17  0.0421
## Age:IPVstatus:Sex             16.1212  16.1212     1  95.21  0.1925
## Age:IPVstatus:Race:w1CES       1.0108   1.0108     1  93.86  1.7793
## Age:IPVstatus:Race             5.3729   5.3729     1  89.19  0.0000
## Age:IPVstatus:w1CES           58.0219  58.0219     1  95.94  0.3316
## Age:IPVstatus                  9.2229   9.2229     1  90.17  2.9346
## Age                          126.1224 126.1224     1  93.35  7.9049
## IPVstatus                      0.0059   0.0059     1  38.15  6.6201
## Sex                          184.8543 184.8543     1  50.18  0.0648
## Race                         172.9128 172.9128     1  50.18  9.8758
## w1CES                          0.0002   0.0002     1  50.35  9.0184
## Age:Sex                        6.8070   6.8070     1  93.35  2.0552
## Age:Race                      12.3819  12.3819     1  93.35  3.9244
## Age:w1CES                      5.5118   5.5118     1 100.84  3.6234
## IPVstatus:Sex                  2.6928   2.6928     1  38.15  0.9422
## IPVstatus:Race                 0.0117   0.0117     1  38.15 15.9184
## IPVstatus:w1CES               62.1940  62.1940     1  38.52 12.2991
## Sex:Race                      18.8171  18.8171     1  50.18  8.8808
## Sex:w1CES                      0.9409   0.9409     1  50.35  6.0840
## Race:w1CES                    36.0607  36.0607     1  50.35 27.1415
## Age:Sex:Race                   3.5224   3.5224     1  93.35  3.4099
## Age:Sex:w1CES                 32.3304  32.3304     1 100.84  4.0940
## Age:Race:w1CES                23.5005  23.5005     1 100.84 10.1053
## IPVstatus:Sex:Race            16.7910  16.7910     1  38.15 10.5187
## IPVstatus:Sex:w1CES            0.6396   0.6396     1  38.52  3.6727
## IPVstatus:Race:w1CES          31.9109  31.9109     1  38.52 19.3066
## Sex:Race:w1CES                 3.1401   3.1401     1  50.35 17.8702
## Age:Sex:Race:w1CES            65.6894  65.6894     1 100.84  6.3951
## IPVstatus:Sex:Race:w1CES     202.7757 202.7757     1  38.52 17.2418
##                              elim.num Pr(>F)
## Age:IPVstatus:Sex:Race:w1CES        1 0.3528
## Age:IPVstatus:Sex:w1CES             2 0.9924
## Age:IPVstatus:Sex:Race              3 0.8378
## Age:IPVstatus:Sex                   4 0.6618
## Age:IPVstatus:Race:w1CES            5 0.1855
## Age:IPVstatus:Race                  6 0.9987
## Age:IPVstatus:w1CES                 7 0.5661
## Age:IPVstatus                       8 0.0901
## Age                              kept 0.0060
## IPVstatus                        kept 0.0141
## Sex                              kept 0.8001
## Race                             kept 0.0028
## w1CES                            kept 0.0042
## Age:Sex                          kept 0.1550
## Age:Race                         kept 0.0505
## Age:w1CES                        kept 0.0598
## IPVstatus:Sex                    kept 0.3378
## IPVstatus:Race                   kept 0.0003
## IPVstatus:w1CES                  kept 0.0012
## Sex:Race                         kept 0.0044
## Sex:w1CES                        kept 0.0171
## Race:w1CES                       kept  0e+00
## Age:Sex:Race                     kept 0.0680
## Age:Sex:w1CES                    kept 0.0457
## Age:Race:w1CES                   kept 0.0020
## IPVstatus:Sex:Race               kept 0.0025
## IPVstatus:Sex:w1CES              kept 0.0628
## IPVstatus:Race:w1CES             kept  1e-04
## Sex:Race:w1CES                   kept  1e-04
## Age:Sex:Race:w1CES               kept 0.0130
## IPVstatus:Sex:Race:w1CES         kept 0.0002
## 
## Least squares means:
##                                   IPVstatus  Sex Race Estimate
## IPVstatus  0                            1.0   NA   NA   21.199
## IPVstatus  1                            2.0   NA   NA   24.242
## Sex  Women                               NA  2.0   NA   18.830
## Sex  Men                                 NA  1.0   NA   26.612
## Race  White                              NA   NA  2.0   25.360
## Race  AfrAm                              NA   NA  1.0   20.081
## IPVstatus:Sex  0 Women                  1.0  2.0   NA   18.935
## IPVstatus:Sex  1 Women                  2.0  2.0   NA   18.725
## IPVstatus:Sex  0 Men                    1.0  1.0   NA   23.464
## IPVstatus:Sex  1 Men                    2.0  1.0   NA   29.759
## IPVstatus:Race  0 White                 1.0   NA  2.0   23.331
## IPVstatus:Race  1 White                 2.0   NA  2.0   27.389
## IPVstatus:Race  0 AfrAm                 1.0   NA  1.0   19.067
## IPVstatus:Race  1 AfrAm                 2.0   NA  1.0   21.095
## Sex:Race  Women White                    NA  2.0  2.0   19.957
## Sex:Race  Men White                      NA  1.0  2.0   30.764
## Sex:Race  Women AfrAm                    NA  2.0  1.0   17.703
## Sex:Race  Men AfrAm                      NA  1.0  1.0   22.459
## IPVstatus:Sex:Race  0 Women White       1.0  2.0  2.0   20.996
## IPVstatus:Sex:Race  1 Women White       2.0  2.0  2.0   18.917
## IPVstatus:Sex:Race  0 Men White         1.0  1.0  2.0   25.667
## IPVstatus:Sex:Race  1 Men White         2.0  1.0  2.0   35.861
## IPVstatus:Sex:Race  0 Women AfrAm       1.0  2.0  1.0   16.873
## IPVstatus:Sex:Race  1 Women AfrAm       2.0  2.0  1.0   18.533
## IPVstatus:Sex:Race  0 Men AfrAm         1.0  1.0  1.0   21.261
## IPVstatus:Sex:Race  1 Men AfrAm         2.0  1.0  1.0   23.658
##                                   Standard Error   DF t-value Lower CI
## IPVstatus  0                               0.735 39.8   28.86     19.7
## IPVstatus  1                               1.229 38.3   19.73     21.8
## Sex  Women                                 0.850 39.0   22.14     17.1
## Sex  Men                                   1.159 39.2   22.96     24.3
## Race  White                                1.111 38.0   22.83     23.1
## Race  AfrAm                                0.912 40.8   22.01     18.2
## IPVstatus:Sex  0 Women                     1.037 38.0   18.26     16.8
## IPVstatus:Sex  1 Women                     1.338 39.1   14.00     16.0
## IPVstatus:Sex  0 Men                       1.041 41.6   22.54     21.4
## IPVstatus:Sex  1 Men                       2.061 38.0   14.44     25.6
## IPVstatus:Race  0 White                    1.151 38.3   20.27     21.0
## IPVstatus:Race  1 White                    1.899 37.9   14.42     23.5
## IPVstatus:Race  0 AfrAm                    0.913 42.2   20.87     17.2
## IPVstatus:Race  1 AfrAm                    1.559 39.0   13.53     17.9
## Sex:Race  Women White                      1.337 38.2   14.92     17.2
## Sex:Race  Men White                        1.774 37.9   17.34     27.2
## Sex:Race  Women AfrAm                      1.051 40.4   16.85     15.6
## Sex:Race  Men AfrAm                        1.492 41.1   15.05     19.4
## IPVstatus:Sex:Race  0 Women White          1.710 38.0   12.28     17.5
## IPVstatus:Sex:Race  1 Women White          2.039 38.0    9.28     14.8
## IPVstatus:Sex:Race  0 Men White            1.540 38.8   16.66     22.6
## IPVstatus:Sex:Race  1 Men White            3.204 37.9   11.19     29.4
## IPVstatus:Sex:Race  0 Women AfrAm          1.174 38.0   14.38     14.5
## IPVstatus:Sex:Race  1 Women AfrAm          1.732 40.9   10.70     15.0
## IPVstatus:Sex:Race  0 Men AfrAm            1.400 45.5   15.19     18.4
## IPVstatus:Sex:Race  1 Men AfrAm            2.593 38.2    9.12     18.4
##                                   Upper CI p-value
## IPVstatus  0                          22.7  <2e-16
## IPVstatus  1                          26.7  <2e-16
## Sex  Women                            20.5  <2e-16
## Sex  Men                              29.0  <2e-16
## Race  White                           27.6  <2e-16
## Race  AfrAm                           21.9  <2e-16
## IPVstatus:Sex  0 Women                21.0  <2e-16
## IPVstatus:Sex  1 Women                21.4  <2e-16
## IPVstatus:Sex  0 Men                  25.6  <2e-16
## IPVstatus:Sex  1 Men                  33.9  <2e-16
## IPVstatus:Race  0 White               25.7  <2e-16
## IPVstatus:Race  1 White               31.2  <2e-16
## IPVstatus:Race  0 AfrAm               20.9  <2e-16
## IPVstatus:Race  1 AfrAm               24.2  <2e-16
## Sex:Race  Women White                 22.7  <2e-16
## Sex:Race  Men White                   34.4  <2e-16
## Sex:Race  Women AfrAm                 19.8  <2e-16
## Sex:Race  Men AfrAm                   25.5  <2e-16
## IPVstatus:Sex:Race  0 Women White     24.5  <2e-16
## IPVstatus:Sex:Race  1 Women White     23.0  <2e-16
## IPVstatus:Sex:Race  0 Men White       28.8  <2e-16
## IPVstatus:Sex:Race  1 Men White       42.3  <2e-16
## IPVstatus:Sex:Race  0 Women AfrAm     19.2  <2e-16
## IPVstatus:Sex:Race  1 Women AfrAm     22.0  <2e-16
## IPVstatus:Sex:Race  0 Men AfrAm       24.1  <2e-16
## IPVstatus:Sex:Race  1 Men AfrAm       28.9  <2e-16
## 
##  Differences of LSMEANS:
##                                    Estimate Standard Error    DF t-value
## IPVstatus 0-1                          -3.0           1.43  38.3   -2.13
## Sex Women-Men                          -7.8           1.44  39.1   -5.41
## Race White-AfrAm                        5.3           1.44  39.1    3.67
## IPVstatus:Sex  0 Women- 1 Women         0.2           1.69  38.4    0.12
## IPVstatus:Sex  0 Women- 0 Men          -4.5           1.47  39.8   -3.08
## IPVstatus:Sex  0 Women- 1 Men         -10.8           2.31  38.0   -4.69
## IPVstatus:Sex  1 Women- 0 Men          -4.7           1.70  40.1   -2.80
## IPVstatus:Sex  1 Women- 1 Men         -11.0           2.46  38.3   -4.49
## IPVstatus:Sex  0 Men- 1 Men            -6.3           2.30  38.3   -2.74
## IPVstatus:Race  0 White- 1 White       -4.1           2.22  38.0   -1.83
## IPVstatus:Race  0 White- 0 AfrAm        4.3           1.47  39.8    2.90
## IPVstatus:Race  0 White- 1 AfrAm        2.2           1.94  38.8    1.15
## IPVstatus:Race  1 White- 0 AfrAm        8.3           2.11  38.7    3.95
## IPVstatus:Race  1 White- 1 AfrAm        6.3           2.46  38.3    2.56
## IPVstatus:Race  0 AfrAm- 1 AfrAm       -2.0           1.79  38.7   -1.13
## Sex:Race  Women White- Men White      -10.8           2.22  38.0   -4.86
## Sex:Race  Women White- Women AfrAm      2.3           1.70  39.0    1.33
## Sex:Race  Women White- Men AfrAm       -2.5           2.00  39.7   -1.25
## Sex:Race  Men White- Women AfrAm       13.1           2.06  38.5    6.33
## Sex:Race  Men White- Men AfrAm          8.3           2.32  39.2    3.58
## Sex:Race  Women AfrAm- Men AfrAm       -4.8           1.82  40.8   -2.61
##                                    Lower CI Upper CI p-value
## IPVstatus 0-1                         -5.93   -0.158   0.039
## Sex Women-Men                        -10.69   -4.874  <2e-16
## Race White-AfrAm                       2.37    8.187   7e-04
## IPVstatus:Sex  0 Women- 1 Women       -3.20    3.619   0.902
## IPVstatus:Sex  0 Women- 0 Men         -7.50   -1.559   0.004
## IPVstatus:Sex  0 Women- 1 Men        -15.50   -6.154  <2e-16
## IPVstatus:Sex  1 Women- 0 Men         -8.16   -1.314   0.008
## IPVstatus:Sex  1 Women- 1 Men        -16.01   -6.061   1e-04
## IPVstatus:Sex  0 Men- 1 Men          -10.95   -1.641   0.009
## IPVstatus:Race  0 White- 1 White      -8.55    0.436   0.075
## IPVstatus:Race  0 White- 0 AfrAm       1.29    7.234   0.006
## IPVstatus:Race  0 White- 1 AfrAm      -1.68    6.157   0.256
## IPVstatus:Race  1 White- 0 AfrAm       4.06   12.586   3e-04
## IPVstatus:Race  1 White- 1 AfrAm       1.32   11.267   0.015
## IPVstatus:Race  0 AfrAm- 1 AfrAm      -5.65    1.591   0.264
## Sex:Race  Women White- Men White     -15.30   -6.310  <2e-16
## Sex:Race  Women White- Women AfrAm    -1.19    5.694   0.193
## Sex:Race  Women White- Men AfrAm      -6.55    1.548   0.219
## Sex:Race  Men White- Women AfrAm       8.89   17.233  <2e-16
## Sex:Race  Men White- Men AfrAm         3.62   12.993   9e-04
## Sex:Race  Women AfrAm- Men AfrAm      -8.44   -1.070   0.013
## 
## Final model:
## lme4::lmer(formula = FluencyWord ~ Age + IPVstatus + Sex + Race + 
##     w1CES + (1 | HNDid) + Age:Sex + Age:Race + Age:w1CES + IPVstatus:Sex + 
##     IPVstatus:Race + IPVstatus:w1CES + Sex:Race + Sex:w1CES + 
##     Race:w1CES + Age:Sex:Race + Age:Sex:w1CES + Age:Race:w1CES + 
##     IPVstatus:Sex:Race + IPVstatus:Sex:w1CES + IPVstatus:Race:w1CES + 
##     Sex:Race:w1CES + Age:Sex:Race:w1CES + IPVstatus:Sex:Race:w1CES, 
##     data = IPVandCognitionDataSet2, REML = reml, contrasts = l)

Re-run suggested final Model 2

(mm2 = lmer(FluencyWord ~ Age + IPVstatus + Sex + Race + w1CES + (Age | HNDid) + 
    (1 | subclass) + Age:Sex + Age:Race + Age:w1CES + IPVstatus:Sex + IPVstatus:Race + 
    IPVstatus:w1CES + Sex:Race + Sex:w1CES + Race:w1CES + Age:Sex:Race + Age:Sex:w1CES + 
    Age:Race:w1CES + IPVstatus:Sex:Race + IPVstatus:Sex:w1CES + IPVstatus:Race:w1CES + 
    Sex:Race:w1CES + Age:Sex:Race:w1CES + IPVstatus:Sex:Race:w1CES, data = IPVandCognitionDataSet2))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: FluencyWord ~ Age + IPVstatus + Sex + Race + w1CES + (Age | HNDid) +      (1 | subclass) + Age:Sex + Age:Race + Age:w1CES + IPVstatus:Sex +      IPVstatus:Race + IPVstatus:w1CES + Sex:Race + Sex:w1CES +      Race:w1CES + Age:Sex:Race + Age:Sex:w1CES + Age:Race:w1CES +      IPVstatus:Sex:Race + IPVstatus:Sex:w1CES + IPVstatus:Race:w1CES +      Sex:Race:w1CES + Age:Sex:Race:w1CES + IPVstatus:Sex:Race:w1CES 
##    Data: IPVandCognitionDataSet2 
## REML criterion at convergence: 731.7 
## Random effects:
##  Groups   Name        Std.Dev. Corr 
##  HNDid    (Intercept) 3.34e+00      
##           Age         1.84e-02 -1.00
##  subclass (Intercept) 7.29e-06      
##  Residual             3.31e+00      
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## Fixed Effects:
##                       (Intercept)                                Age  
##                          20.27515                           -0.19581  
##                        IPVstatus1                             SexMen  
##                          -8.46098                            1.20011  
##                         RaceAfrAm                              w1CES  
##                          -2.25879                           -0.02025  
##                        Age:SexMen                      Age:RaceAfrAm  
##                          -0.96200                            0.01637  
##                         Age:w1CES                  IPVstatus1:SexMen  
##                           0.00408                          -30.67290  
##              IPVstatus1:RaceAfrAm                   IPVstatus1:w1CES  
##                           5.50026                            0.43046  
##                  SexMen:RaceAfrAm                       SexMen:w1CES  
##                           2.19236                            0.37659  
##                   RaceAfrAm:w1CES               Age:SexMen:RaceAfrAm  
##                          -0.19277                            1.07521  
##                  Age:SexMen:w1CES                Age:RaceAfrAm:w1CES  
##                           0.08352                           -0.01086  
##       IPVstatus1:SexMen:RaceAfrAm            IPVstatus1:SexMen:w1CES  
##                          47.33755                            2.83205  
##        IPVstatus1:RaceAfrAm:w1CES             SexMen:RaceAfrAm:w1CES  
##                          -0.12017                           -0.32067  
##        Age:SexMen:RaceAfrAm:w1CES  IPVstatus1:SexMen:RaceAfrAm:w1CES  
##                          -0.09256                           -3.88586

summary(mm2)
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: FluencyWord ~ Age + IPVstatus + Sex + Race + w1CES + (Age | HNDid) +      (1 | subclass) + Age:Sex + Age:Race + Age:w1CES + IPVstatus:Sex +      IPVstatus:Race + IPVstatus:w1CES + Sex:Race + Sex:w1CES +      Race:w1CES + Age:Sex:Race + Age:Sex:w1CES + Age:Race:w1CES +      IPVstatus:Sex:Race + IPVstatus:Sex:w1CES + IPVstatus:Race:w1CES +      Sex:Race:w1CES + Age:Sex:Race:w1CES + IPVstatus:Sex:Race:w1CES 
##    Data: IPVandCognitionDataSet2 
## 
## REML criterion at convergence: 731.7 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr 
##  HNDid    (Intercept) 1.11e+01 3.34e+00      
##           Age         3.39e-04 1.84e-02 -1.00
##  subclass (Intercept) 5.31e-11 7.29e-06      
##  Residual             1.10e+01 3.31e+00      
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## 
## Fixed effects:
##                                    Estimate Std. Error        df t value
## (Intercept)                        20.27515    4.25518   8.20000    4.76
## Age                                -0.19581    0.29278  20.60000   -0.67
## IPVstatus1                         -8.46098    4.84178  37.80000   -1.75
## SexMen                              1.20011    5.04307   8.20000    0.24
## RaceAfrAm                          -2.25879    5.14478  11.70000   -0.44
## w1CES                              -0.02025    0.21928  16.90000   -0.09
## Age:SexMen                         -0.96200    0.39634  25.30000   -2.43
## Age:RaceAfrAm                       0.01637    0.37313  31.80000    0.04
## Age:w1CES                           0.00408    0.01581  47.40000    0.26
## IPVstatus1:SexMen                 -30.67290   10.83452  30.80000   -2.83
## IPVstatus1:RaceAfrAm                5.50026    5.98746  37.90000    0.92
## IPVstatus1:w1CES                    0.43046    0.21308  37.20000    2.02
## SexMen:RaceAfrAm                    2.19236    6.45900  12.40000    0.34
## SexMen:w1CES                        0.37659    0.28535  15.00000    1.32
## RaceAfrAm:w1CES                    -0.19277    0.28595  21.00000   -0.67
## Age:SexMen:RaceAfrAm                1.07521    0.55632  52.40000    1.93
## Age:SexMen:w1CES                    0.08352    0.02678  72.30000    3.12
## Age:RaceAfrAm:w1CES                -0.01086    0.02027  53.10000   -0.54
## IPVstatus1:SexMen:RaceAfrAm        47.33755   14.51562  34.20000    3.26
## IPVstatus1:SexMen:w1CES             2.83205    0.78212  34.20000    3.62
## IPVstatus1:RaceAfrAm:w1CES         -0.12017    0.29658  36.60000   -0.41
## SexMen:RaceAfrAm:w1CES             -0.32067    0.37123  18.00000   -0.86
## Age:SexMen:RaceAfrAm:w1CES         -0.09256    0.03580  88.00000   -2.59
## IPVstatus1:SexMen:RaceAfrAm:w1CES  -3.88586    0.93090  34.50000   -4.17
##                                   Pr(>|t|)
## (Intercept)                        0.00132
## Age                                0.51105
## IPVstatus1                         0.08867
## SexMen                             0.81775
## RaceAfrAm                          0.66865
## w1CES                              0.92751
## Age:SexMen                         0.02266
## Age:RaceAfrAm                      0.96528
## Age:w1CES                          0.79739
## IPVstatus1:SexMen                  0.00811
## IPVstatus1:RaceAfrAm               0.36410
## IPVstatus1:w1CES                   0.05061
## SexMen:RaceAfrAm                   0.73997
## SexMen:w1CES                       0.20667
## RaceAfrAm:w1CES                    0.50755
## Age:SexMen:RaceAfrAm               0.05869
## Age:SexMen:w1CES                   0.00261
## Age:RaceAfrAm:w1CES                0.59415
## IPVstatus1:SexMen:RaceAfrAm        0.00252
## IPVstatus1:SexMen:w1CES            0.00094
## IPVstatus1:RaceAfrAm:w1CES         0.68769
## SexMen:RaceAfrAm:w1CES             0.39905
## Age:SexMen:RaceAfrAm:w1CES         0.01136
## IPVstatus1:SexMen:RaceAfrAm:w1CES  0.00019
## 
## Correlation matrix not shown by default, as p = 24 > 20.
## Use print(x, correlation=TRUE)  or
##     vcov(x)   if you need it

plot(st)

plot of chunk unnamed-chunk-6 plot of chunk unnamed-chunk-6 plot of chunk unnamed-chunk-6 plot of chunk unnamed-chunk-6 plot of chunk unnamed-chunk-6 plot of chunk unnamed-chunk-6 plot of chunk unnamed-chunk-6 plot of chunk unnamed-chunk-6 plot of chunk unnamed-chunk-6 plot of chunk unnamed-chunk-6 plot of chunk unnamed-chunk-6 plot of chunk unnamed-chunk-6 plot of chunk unnamed-chunk-6 plot of chunk unnamed-chunk-6 plot of chunk unnamed-chunk-6 plot of chunk unnamed-chunk-6


plot(mm2)

plot of chunk unnamed-chunk-6

Clock Total Regression Model 2 (with CES)

load("~/Desktop/Megan/Research/IPV and Cognition Paper/IPV R Output/IPVandCognitionDataSet2.rda")

library(lme4)
library(lmerTest)

(mm2 = lmer(ClockTotal ~ (Age + IPVstatus + Sex + Race + w1CES)^5 + (Age | HNDid) + 
    (1 | subclass), data = IPVandCognitionDataSet2, REML = F))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by maximum likelihood ['merModLmerTest']
## Formula: ClockTotal ~ (Age + IPVstatus + Sex + Race + w1CES)^5 + (Age |      HNDid) + (1 | subclass) 
##    Data: IPVandCognitionDataSet2 
##      AIC      BIC   logLik deviance 
##    413.4    518.3   -169.7    339.4 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 0.1910       
##           Age         0.0154   1.00
##  subclass (Intercept) 0.5980       
##  Residual             0.8173       
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## Fixed Effects:
##                           (Intercept)  
##                              7.014350  
##                                   Age  
##                             -0.062561  
##                            IPVstatus1  
##                             -1.768974  
##                                SexMen  
##                              1.127260  
##                             RaceAfrAm  
##                              1.592682  
##                                 w1CES  
##                              0.052052  
##                        Age:IPVstatus1  
##                             -0.270452  
##                            Age:SexMen  
##                             -0.126521  
##                         Age:RaceAfrAm  
##                              0.068793  
##                             Age:w1CES  
##                              0.000214  
##                     IPVstatus1:SexMen  
##                              0.199394  
##                  IPVstatus1:RaceAfrAm  
##                              0.429321  
##                      IPVstatus1:w1CES  
##                              0.111782  
##                      SexMen:RaceAfrAm  
##                              0.111290  
##                          SexMen:w1CES  
##                             -0.007955  
##                       RaceAfrAm:w1CES  
##                             -0.022658  
##                 Age:IPVstatus1:SexMen  
##                              0.140202  
##              Age:IPVstatus1:RaceAfrAm  
##                              0.107495  
##                  Age:IPVstatus1:w1CES  
##                              0.011937  
##                  Age:SexMen:RaceAfrAm  
##                              0.190969  
##                      Age:SexMen:w1CES  
##                              0.012304  
##                   Age:RaceAfrAm:w1CES  
##                              0.003555  
##           IPVstatus1:SexMen:RaceAfrAm  
##                              4.919451  
##               IPVstatus1:SexMen:w1CES  
##                              0.177508  
##            IPVstatus1:RaceAfrAm:w1CES  
##                             -0.085683  
##                SexMen:RaceAfrAm:w1CES  
##                             -0.054737  
##       Age:IPVstatus1:SexMen:RaceAfrAm  
##                              0.654864  
##           Age:IPVstatus1:SexMen:w1CES  
##                              0.013937  
##        Age:IPVstatus1:RaceAfrAm:w1CES  
##                             -0.011466  
##            Age:SexMen:RaceAfrAm:w1CES  
##                             -0.020933  
##     IPVstatus1:SexMen:RaceAfrAm:w1CES  
##                             -0.441035  
## Age:IPVstatus1:SexMen:RaceAfrAm:w1CES  
##                             -0.049345

(st = step(mm2))
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: 
##  model has been refitted with REML=TRUE 
## 
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Random term (Age | HNDid) was eliminated because of having correlation +-1 or NaN
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Random term (Age + 0 | HNDid) was eliminated because of standard deviation being equal to 0
## 
## Random effects:
##                Chi.sq Chi.DF elim.num p.value
## (1 | HNDid)      0.00      1        1   1e+00
## (1 | subclass)  12.45      1     kept   4e-04
## 
## Fixed effects:
##                              Sum Sq Mean Sq NumDF  DenDF F.value elim.num
## Age:IPVstatus:Sex:Race:w1CES 0.4809  0.4809     1  78.17  0.5269        1
## IPVstatus:Sex:Race:w1CES     0.0205  0.0205     1  94.60  0.0231        2
## Age:IPVstatus:Sex:Race       0.3931  0.3931     1  94.08  0.2929        3
## IPVstatus:Sex:Race           0.4734  0.4734     1  95.92  0.7602        4
## Age:IPVstatus:Race:w1CES     0.1216  0.1216     1  93.30  2.1509        5
## IPVstatus:Race:w1CES         0.0035  0.0035     1  97.79  0.0540        6
## Age:IPVstatus:Race           6.1600  6.1600     1  97.36  0.1499        7
## IPVstatus:Race               1.9178  1.9178     1  95.02  0.9675        8
## Age:Sex:Race:w1CES           3.9288  3.9288     1 100.98  1.9548        9
## Age:Sex:Race                 0.9747  0.9747     1 102.36  0.4804       10
## Sex:Race:w1CES               1.2271  1.2271     1 100.55  1.5596       11
## Sex:Race                     0.0359  0.0359     1 104.05  0.1769       12
## Age:Race:w1CES               0.5909  0.5909     1 104.68  1.8614       13
## Race:w1CES                   0.7407  0.7407     1 104.78  1.8796       14
## Age                          0.0098  0.0098     1 106.41  0.6428     kept
## IPVstatus                    1.5781  1.5781     1 107.98  2.6179     kept
## Sex                          1.6300  1.6300     1 106.19 13.6949     kept
## Race                         0.0009  0.0009     1 105.92  7.1633     kept
## w1CES                        0.4379  0.4379     1 104.33  2.1000     kept
## Age:IPVstatus                0.0025  0.0025     1 107.73  3.4635     kept
## Age:Sex                      2.4846  2.4846     1 105.63  8.4155     kept
## Age:Race                     7.6056  7.6056     1 107.81 11.3662     kept
## Age:w1CES                    0.9510  0.9510     1 105.44  2.0961     kept
## IPVstatus:Sex                2.1819  2.1819     1 105.43  6.2946     kept
## IPVstatus:w1CES              0.9138  0.9138     1 107.99  5.4549     kept
## Sex:w1CES                    6.2879  6.2879     1 107.89 12.7315     kept
## Age:IPVstatus:Sex            2.7646  2.7646     1 105.19 11.3318     kept
## Age:IPVstatus:w1CES          0.0199  0.0199     1 106.06  7.8374     kept
## Age:Sex:w1CES                0.0968  0.0968     1 107.98  6.0746     kept
## IPVstatus:Sex:w1CES          0.0337  0.0337     1 107.19  6.6921     kept
## Age:IPVstatus:Sex:w1CES      4.3739  4.3739     1 105.31  8.8146     kept
##                              Pr(>F)
## Age:IPVstatus:Sex:Race:w1CES 0.4701
## IPVstatus:Sex:Race:w1CES     0.8794
## Age:IPVstatus:Sex:Race       0.5897
## IPVstatus:Sex:Race           0.3854
## Age:IPVstatus:Race:w1CES     0.1459
## IPVstatus:Race:w1CES         0.8167
## Age:IPVstatus:Race           0.6995
## IPVstatus:Race               0.3278
## Age:Sex:Race:w1CES           0.1651
## Age:Sex:Race                 0.4898
## Sex:Race:w1CES               0.2146
## Sex:Race                     0.6749
## Age:Race:w1CES               0.1754
## Race:w1CES                   0.1733
## Age                          0.4245
## IPVstatus                    0.1086
## Sex                          0.0003
## Race                         0.0086
## w1CES                        0.1503
## Age:IPVstatus                0.0655
## Age:Sex                      0.0045
## Age:Race                     0.0010
## Age:w1CES                    0.1506
## IPVstatus:Sex                0.0136
## IPVstatus:w1CES              0.0214
## Sex:w1CES                    0.0005
## Age:IPVstatus:Sex            0.0011
## Age:IPVstatus:w1CES          0.0061
## Age:Sex:w1CES                0.0153
## IPVstatus:Sex:w1CES          0.0110
## Age:IPVstatus:Sex:w1CES      0.0037
## 
## Least squares means:
##                        IPVstatus  Sex Race Estimate Standard Error   DF
## IPVstatus  0                 1.0   NA   NA    8.773          0.186 22.3
## IPVstatus  1                 2.0   NA   NA    8.946          0.225 42.5
## Sex  Women                    NA  2.0   NA    8.712          0.207 30.4
## Sex  Men                      NA  1.0   NA    9.007          0.224 36.2
## Race  White                   NA   NA  2.0    8.824          0.226 36.2
## Race  AfrAm                   NA   NA  1.0    8.895          0.200 27.6
## IPVstatus:Sex  0 Women       1.0  2.0   NA    8.582          0.217 36.1
## IPVstatus:Sex  1 Women       2.0  2.0   NA    8.842          0.280 69.7
## IPVstatus:Sex  0 Men         1.0  1.0   NA    8.964          0.234 44.0
## IPVstatus:Sex  1 Men         2.0  1.0   NA    9.050          0.309 78.0
##                        t-value Lower CI Upper CI p-value
## IPVstatus  0              47.3     8.39     9.16  <2e-16
## IPVstatus  1              39.8     8.49     9.40  <2e-16
## Sex  Women                42.0     8.29     9.13  <2e-16
## Sex  Men                  40.1     8.55     9.46  <2e-16
## Race  White               39.0     8.36     9.28  <2e-16
## Race  AfrAm               44.5     8.49     9.30  <2e-16
## IPVstatus:Sex  0 Women    39.5     8.14     9.02  <2e-16
## IPVstatus:Sex  1 Women    31.5     8.28     9.40  <2e-16
## IPVstatus:Sex  0 Men      38.3     8.49     9.43  <2e-16
## IPVstatus:Sex  1 Men      29.3     8.43     9.67  <2e-16
## 
##  Differences of LSMEANS:
##                                 Estimate Standard Error    DF t-value
## IPVstatus 0-1                       -0.2         0.2044  93.2   -0.85
## Sex Women-Men                       -0.3         0.2416 107.8   -1.22
## Race White-AfrAm                    -0.1         0.2331 107.3   -0.30
## IPVstatus:Sex  0 Women- 1 Women     -0.3         0.2828  98.5   -0.92
## IPVstatus:Sex  0 Women- 0 Men       -0.4         0.2567 107.4   -1.49
## IPVstatus:Sex  0 Women- 1 Men       -0.5         0.3229 106.0   -1.45
## IPVstatus:Sex  1 Women- 0 Men       -0.1         0.3098 105.5   -0.39
## IPVstatus:Sex  1 Women- 1 Men       -0.2         0.3824 106.8   -0.54
## IPVstatus:Sex  0 Men- 1 Men         -0.1         0.3146  97.2   -0.28
##                                 Lower CI Upper CI p-value
## IPVstatus 0-1                     -0.580    0.232     0.4
## Sex Women-Men                     -0.774    0.184     0.2
## Race White-AfrAm                  -0.533    0.391     0.8
## IPVstatus:Sex  0 Women- 1 Women   -0.822    0.300     0.4
## IPVstatus:Sex  0 Women- 0 Men     -0.891    0.127     0.1
## IPVstatus:Sex  0 Women- 1 Men     -1.109    0.172     0.1
## IPVstatus:Sex  1 Women- 0 Men     -0.736    0.493     0.7
## IPVstatus:Sex  1 Women- 1 Men     -0.966    0.550     0.6
## IPVstatus:Sex  0 Men- 1 Men       -0.711    0.538     0.8
## 
## Final model:
## lme4::lmer(formula = ClockTotal ~ Age + IPVstatus + Sex + Race + 
##     w1CES + (1 | subclass) + Age:IPVstatus + Age:Sex + Age:Race + 
##     Age:w1CES + IPVstatus:Sex + IPVstatus:w1CES + Sex:w1CES + 
##     Age:IPVstatus:Sex + Age:IPVstatus:w1CES + Age:Sex:w1CES + 
##     IPVstatus:Sex:w1CES + Age:IPVstatus:Sex:w1CES, data = IPVandCognitionDataSet2, 
##     REML = reml, contrasts = l)

Re-run suggested final Model 2

(mm2 = lmer(ClockTotal ~ Age + IPVstatus + Sex + Race + w1CES + (Age | HNDid) + 
    (1 | subclass) + Age:IPVstatus + Age:Sex + Age:Race + Age:w1CES + IPVstatus:Sex + 
    IPVstatus:w1CES + Sex:w1CES + Age:IPVstatus:Sex + Age:IPVstatus:w1CES + 
    Age:Sex:w1CES + IPVstatus:Sex:w1CES + Age:IPVstatus:Sex:w1CES, data = IPVandCognitionDataSet2))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: ClockTotal ~ Age + IPVstatus + Sex + Race + w1CES + (Age | HNDid) +      (1 | subclass) + Age:IPVstatus + Age:Sex + Age:Race + Age:w1CES +      IPVstatus:Sex + IPVstatus:w1CES + Sex:w1CES + Age:IPVstatus:Sex +      Age:IPVstatus:w1CES + Age:Sex:w1CES + IPVstatus:Sex:w1CES +      Age:IPVstatus:Sex:w1CES 
##    Data: IPVandCognitionDataSet2 
## REML criterion at convergence: 442.2 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 0.6578       
##           Age         0.0455   1.00
##  subclass (Intercept) 0.5844       
##  Residual             0.8913       
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## Fixed Effects:
##                 (Intercept)                          Age  
##                     7.79096                     -0.05555  
##                  IPVstatus1                       SexMen  
##                    -0.79715                      1.06472  
##                   RaceAfrAm                        w1CES  
##                     0.66852                      0.03056  
##              Age:IPVstatus1                   Age:SexMen  
##                    -0.14200                     -0.02797  
##               Age:RaceAfrAm                    Age:w1CES  
##                     0.08704                      0.00102  
##           IPVstatus1:SexMen             IPVstatus1:w1CES  
##                     3.54170                      0.01726  
##                SexMen:w1CES        Age:IPVstatus1:SexMen  
##                    -0.04111                      0.51598  
##        Age:IPVstatus1:w1CES             Age:SexMen:w1CES  
##                     0.00199                      0.00168  
##     IPVstatus1:SexMen:w1CES  Age:IPVstatus1:SexMen:w1CES  
##                    -0.20174                     -0.02720

summary(mm2)
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: ClockTotal ~ Age + IPVstatus + Sex + Race + w1CES + (Age | HNDid) +      (1 | subclass) + Age:IPVstatus + Age:Sex + Age:Race + Age:w1CES +      IPVstatus:Sex + IPVstatus:w1CES + Sex:w1CES + Age:IPVstatus:Sex +      Age:IPVstatus:w1CES + Age:Sex:w1CES + IPVstatus:Sex:w1CES +      Age:IPVstatus:Sex:w1CES 
##    Data: IPVandCognitionDataSet2 
## 
## REML criterion at convergence: 442.2 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  HNDid    (Intercept) 0.43275  0.6578       
##           Age         0.00207  0.0455   1.00
##  subclass (Intercept) 0.34158  0.5844       
##  Residual             0.79447  0.8913       
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## 
## Fixed effects:
##                             Estimate Std. Error       df t value Pr(>|t|)
## (Intercept)                  7.79096    0.79789 33.60000    9.76  2.4e-11
## Age                         -0.05555    0.06624 46.00000   -0.84    0.406
## IPVstatus1                  -0.79715    1.15124 48.00000   -0.69    0.492
## SexMen                       1.06472    0.89270 33.80000    1.19    0.241
## RaceAfrAm                    0.66852    0.41253 25.60000    1.62    0.117
## w1CES                        0.03056    0.04303 41.40000    0.71    0.482
## Age:IPVstatus1              -0.14200    0.10612 76.60000   -1.34    0.185
## Age:SexMen                  -0.02797    0.08440 59.00000   -0.33    0.741
## Age:RaceAfrAm                0.08704    0.03813 45.10000    2.28    0.027
## Age:w1CES                    0.00102    0.00375 60.80000    0.27    0.787
## IPVstatus1:SexMen            3.54170    2.06555 24.70000    1.71    0.099
## IPVstatus1:w1CES             0.01726    0.05301 34.80000    0.33    0.747
## SexMen:w1CES                -0.04111    0.05422 45.00000   -0.76    0.452
## Age:IPVstatus1:SexMen        0.51598    0.19708 47.40000    2.62    0.012
## Age:IPVstatus1:w1CES         0.00199    0.00479 50.40000    0.41    0.680
## Age:SexMen:w1CES             0.00168    0.00565 88.30000    0.30    0.767
## IPVstatus1:SexMen:w1CES     -0.20174    0.11344 27.20000   -1.78    0.087
## Age:IPVstatus1:SexMen:w1CES -0.02720    0.01203 55.80000   -2.26    0.028
## 
## Correlation of Fixed Effects:
##             (Intr) Age    IPVst1 SexMen RcAfrA w1CES  Ag:IPV1 Ag:SxM
## Age          0.862                                                  
## IPVstatus1  -0.577 -0.556                                           
## SexMen      -0.789 -0.712  0.477                                    
## RaceAfrAm   -0.467 -0.379  0.161  0.216                             
## w1CES       -0.838 -0.766  0.536  0.723  0.172                      
## Ag:IPVstts1 -0.469 -0.567  0.898  0.394  0.123  0.451               
## Age:SexMen  -0.663 -0.746  0.414  0.860  0.166  0.624  0.435        
## Age:RcAfrAm -0.294 -0.378  0.113  0.122  0.803  0.066  0.095   0.101
## Age:w1CES   -0.730 -0.842  0.505  0.649  0.110  0.888  0.535   0.693
## IPVstts1:SM  0.225  0.223 -0.515 -0.386  0.120 -0.269 -0.471  -0.358
## IPVst1:1CES  0.702  0.667 -0.844 -0.583 -0.199 -0.812 -0.734  -0.503
## SexMn:w1CES  0.723  0.659 -0.440 -0.858 -0.180 -0.838 -0.367  -0.766
## Ag:IPVs1:SM  0.199  0.225 -0.452 -0.337  0.125 -0.246 -0.517  -0.423
## A:IPV1:1CES  0.607  0.686 -0.747 -0.509 -0.168 -0.708 -0.832  -0.534
## Ag:SxM:1CES  0.568  0.639 -0.360 -0.700 -0.117 -0.652 -0.383  -0.870
## IPV1:SM:1CE -0.203 -0.191  0.336  0.361 -0.184  0.339  0.299   0.339
## A:IPV1:SM:1 -0.166 -0.162  0.256  0.293 -0.183  0.278  0.297   0.377
##             Ag:RAA A:1CES IPVs1:SM IPV1:1 SM:1CE Ag:IPV1:SM A:IPV1:1
## Age                                                                 
## IPVstatus1                                                          
## SexMen                                                              
## RaceAfrAm                                                           
## w1CES                                                               
## Ag:IPVstts1                                                         
## Age:SexMen                                                          
## Age:RcAfrAm                                                         
## Age:w1CES    0.045                                                  
## IPVstts1:SM  0.143 -0.272                                           
## IPVst1:1CES -0.128 -0.735  0.423                                    
## SexMn:w1CES -0.076 -0.745  0.349    0.672                           
## Ag:IPVs1:SM  0.215 -0.291  0.817    0.366  0.323                    
## A:IPV1:1CES -0.085 -0.791  0.385    0.864  0.585  0.429             
## Ag:SxM:1CES -0.030 -0.733  0.305    0.526  0.823  0.382      0.566  
## IPV1:SM:1CE -0.225  0.324 -0.913   -0.407 -0.447 -0.776     -0.361  
## A:IPV1:SM:1 -0.310  0.310 -0.697   -0.307 -0.377 -0.909     -0.371  
##             A:SM:1 IPV1:SM:
## Age                        
## IPVstatus1                 
## SexMen                     
## RaceAfrAm                  
## w1CES                      
## Ag:IPVstts1                
## Age:SexMen                 
## Age:RcAfrAm                
## Age:w1CES                  
## IPVstts1:SM                
## IPVst1:1CES                
## SexMn:w1CES                
## Ag:IPVs1:SM                
## A:IPV1:1CES                
## Ag:SxM:1CES                
## IPV1:SM:1CE -0.381         
## A:IPV1:SM:1 -0.452  0.804

plot(st)

plot of chunk unnamed-chunk-8 plot of chunk unnamed-chunk-8 plot of chunk unnamed-chunk-8 plot of chunk unnamed-chunk-8 plot of chunk unnamed-chunk-8 plot of chunk unnamed-chunk-8 plot of chunk unnamed-chunk-8 plot of chunk unnamed-chunk-8 plot of chunk unnamed-chunk-8


plot(mm2)

plot of chunk unnamed-chunk-8