Trails B Regression Models (capped at 300)

Trails B Regression Model 1

## Loading required package: Matrix
## KernSmooth 2.23 loaded
## Copyright M. P. Wand 1997-2009
## 
## Attaching package: 'lmerTest'
## 
## The following object is masked from 'package:lme4':
## 
##     lmer
## 
## The following object is masked from 'package:stats':
## 
##     step
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by maximum likelihood ['merModLmerTest']
## Formula: TrailsBlow ~ (Age + IPVstatus + Sex + Race)^4 + (Age | HNDid) +      (1 | subclass) 
##    Data: IPVandCognitionDataSet2 
##      AIC      BIC   logLik deviance 
##   1404.1   1463.7   -681.1   1362.1 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 73.16        
##           Age          2.52    1.00
##  subclass (Intercept)  0.00        
##  Residual             34.74        
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## Fixed Effects:
##                     (Intercept)                              Age  
##                         76.0386                           1.1322  
##                      IPVstatus1                           SexMen  
##                          0.4245                          18.5488  
##                       RaceAfrAm                   Age:IPVstatus1  
##                         71.9467                           0.0807  
##                      Age:SexMen                    Age:RaceAfrAm  
##                          1.9750                           1.5792  
##               IPVstatus1:SexMen             IPVstatus1:RaceAfrAm  
##                         92.2718                         -65.3061  
##                SexMen:RaceAfrAm            Age:IPVstatus1:SexMen  
##                        -34.3284                           3.9561  
##        Age:IPVstatus1:RaceAfrAm             Age:SexMen:RaceAfrAm  
##                         -0.9871                          -1.2101  
##     IPVstatus1:SexMen:RaceAfrAm  Age:IPVstatus1:SexMen:RaceAfrAm  
##                         19.0668                          -9.4174
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: 
##  model has been refitted with REML=TRUE 
## 
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Random term (Age | HNDid) was eliminated because of having correlation +-1 or NaN
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Random term (Age + 0 | HNDid) was eliminated because of standard deviation being equal to 0
## 
## Random effects:
##                Chi.sq Chi.DF elim.num p.value
## (1 | subclass)   0.00      1        1       1
## (1 | HNDid)     37.48      1     kept  <1e-07
## 
## Fixed effects:
##                          Sum Sq  Mean Sq NumDF  DenDF F.value elim.num
## Age:IPVstatus:Sex:Race  1308.12  1308.12     1 109.21  0.9360        1
## Age:IPVstatus:Sex        125.74   125.74     1 110.96  0.0697        2
## IPVstatus:Sex:Race       769.23   769.23     1  52.78  0.5062        3
## Age:Sex:Race            1360.61  1360.61     1 112.33  1.1206        4
## Sex:Race                  26.97    26.97     1  53.80  0.0187        5
## Age:Sex                 1824.25  1824.25     1 114.64  1.1873        6
## Age:IPVstatus:Race      2597.76  2597.76     1 115.28  1.3823        7
## Age:IPVstatus             51.37    51.37     1 116.87  0.1378        8
## Age:Race                 184.66   184.66     1 116.29  0.3649        9
## IPVstatus:Race           941.75   941.75     1  56.89  0.6440       10
## Age                    13383.73 13383.73     1 119.16  9.3438     kept
## IPVstatus                666.83   666.83     1  57.71  1.2850     kept
## Sex                     3485.23  3485.23     1  57.97  6.4636     kept
## Race                    8282.63  8282.63     1  57.67  4.5432     kept
## IPVstatus:Sex          13491.72 13491.72     1  57.66  9.2609     kept
##                        Pr(>F)
## Age:IPVstatus:Sex:Race 0.3354
## Age:IPVstatus:Sex      0.7923
## IPVstatus:Sex:Race     0.4799
## Age:Sex:Race           0.2921
## Sex:Race               0.8918
## Age:Sex                0.2782
## Age:IPVstatus:Race     0.2421
## Age:IPVstatus          0.7111
## Age:Race               0.5470
## IPVstatus:Race         0.4256
## Age                    0.0028
## IPVstatus              0.2617
## Sex                    0.0137
## Race                   0.0373
## IPVstatus:Sex          0.0035
## 
## Least squares means:
##                        IPVstatus  Sex Race Estimate Standard Error   DF
## IPVstatus  0                 1.0   NA   NA     96.8           10.7 57.7
## IPVstatus  1                 2.0   NA   NA    117.3           15.0 57.7
## Sex  Women                    NA  2.0   NA     84.0           12.3 57.7
## Sex  Men                      NA  1.0   NA    130.1           13.7 57.9
## Race  White                   NA   NA  2.0     88.2           14.4 57.7
## Race  AfrAm                   NA   NA  1.0    125.9           11.1 57.7
## IPVstatus:Sex  0 Women       1.0  2.0   NA    101.3           14.7 57.8
## IPVstatus:Sex  1 Women       2.0  2.0   NA     66.6           19.5 57.7
## IPVstatus:Sex  0 Men         1.0  1.0   NA     92.2           15.2 57.8
## IPVstatus:Sex  1 Men         2.0  1.0   NA    168.0           22.6 57.8
##                        t-value Lower CI Upper CI p-value
## IPVstatus  0              9.07     75.4      118  <2e-16
## IPVstatus  1              7.83     87.3      147  <2e-16
## Sex  Women                6.83     59.4      109  <2e-16
## Sex  Men                  9.48    102.7      158  <2e-16
## Race  White               6.13     59.4      117  <2e-16
## Race  AfrAm              11.31    103.6      148  <2e-16
## IPVstatus:Sex  0 Women    6.89     71.9      131  <2e-16
## IPVstatus:Sex  1 Women    3.42     27.7      106  0.0011
## IPVstatus:Sex  0 Men      6.09     61.9      123  <2e-16
## IPVstatus:Sex  1 Men      7.43    122.7      213  <2e-16
## 
##  Differences of LSMEANS:
##                                 Estimate Standard Error     DF t-value
## IPVstatus 0-1                      -20.5          18.11   57.7   -1.13
## Sex Women-Men                      -46.1          18.15   58.0   -2.54
## Race White-AfrAm                   -37.6          17.66   57.7   -2.13
## IPVstatus:Sex  0 Women- 1 Women     34.7          24.19   57.7    1.43
## IPVstatus:Sex  0 Women- 0 Men        9.1          20.87   57.9    0.44
## IPVstatus:Sex  0 Women- 1 Men      -66.7          26.67   58.0   -2.50
## IPVstatus:Sex  1 Women- 0 Men      -25.6          24.56   57.7   -1.04
## IPVstatus:Sex  1 Women- 1 Men     -101.4          29.70   57.7   -3.41
## IPVstatus:Sex  0 Men- 1 Men        -75.8          27.01   57.7   -2.81
##                                 Lower CI Upper CI p-value
## IPVstatus 0-1                      -56.8    15.72   0.262
## Sex Women-Men                      -82.5    -9.81   0.014
## Race White-AfrAm                   -73.0    -2.29   0.037
## IPVstatus:Sex  0 Women- 1 Women    -13.7    83.15   0.157
## IPVstatus:Sex  0 Women- 0 Men      -32.7    50.89   0.664
## IPVstatus:Sex  0 Women- 1 Men     -120.0   -13.27   0.015
## IPVstatus:Sex  1 Women- 0 Men      -74.8    23.55   0.301
## IPVstatus:Sex  1 Women- 1 Men     -160.8   -41.92   0.001
## IPVstatus:Sex  0 Men- 1 Men       -129.8   -21.70   0.007
## 
## Final model:
## lme4::lmer(formula = TrailsBlow ~ Age + IPVstatus + Sex + Race + 
##     (1 | HNDid) + IPVstatus:Sex, data = IPVandCognitionDataSet2, 
##     REML = reml, contrasts = l)

Re-run the suggested final Model 1

(mm1 = lmer(TrailsBlow ~ Age + IPVstatus + Sex + Race + (Age | HNDid) + (1 | 
    subclass) + IPVstatus:Sex, data = IPVandCognitionDataSet2, REML = F))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by maximum likelihood ['merModLmerTest']
## Formula: TrailsBlow ~ Age + IPVstatus + Sex + Race + (Age | HNDid) + (1 |      subclass) + IPVstatus:Sex 
##    Data: IPVandCognitionDataSet2 
##      AIC      BIC   logLik deviance 
##     1392     1423     -685     1370 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 75.47        
##           Age          2.51    0.90
##  subclass (Intercept)  0.00        
##  Residual             33.70        
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## Fixed Effects:
##       (Intercept)                Age         IPVstatus1  
##             97.51               2.27             -33.60  
##            SexMen          RaceAfrAm  IPVstatus1:SexMen  
##            -15.51              41.37             118.05

summary(mm1)
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Linear mixed model fit by maximum likelihood ['merModLmerTest']
## Formula: TrailsBlow ~ Age + IPVstatus + Sex + Race + (Age | HNDid) + (1 |      subclass) + IPVstatus:Sex 
##    Data: IPVandCognitionDataSet2 
## 
##      AIC      BIC   logLik deviance 
##     1392     1423     -685     1370 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  HNDid    (Intercept) 5696.0   75.47        
##           Age            6.3    2.51    0.90
##  subclass (Intercept)    0.0    0.00        
##  Residual             1135.9   33.70        
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## 
## Fixed effects:
##                   Estimate Std. Error      df t value Pr(>|t|)
## (Intercept)         97.512     20.333  67.800    4.80  9.2e-06
## Age                  2.272      0.976  48.300    2.33  0.02409
## IPVstatus1         -33.596     21.949  61.500   -1.53  0.13098
## SexMen             -15.506     18.868  60.100   -0.82  0.41442
## RaceAfrAm           41.367     15.979  57.900    2.59  0.01216
## IPVstatus1:SexMen  118.054     33.374  62.500    3.54  0.00077
## 
## Correlation of Fixed Effects:
##             (Intr) Age    IPVst1 SexMen RcAfrA
## Age          0.585                            
## IPVstatus1  -0.452 -0.101                     
## SexMen      -0.501 -0.116  0.393              
## RaceAfrAm   -0.552 -0.040  0.085  0.053       
## IPVstts1:SM  0.313  0.076 -0.660 -0.569 -0.075

plot(st)

plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1


plot(mm1)

plot of chunk unnamed-chunk-1

Trails B Regression Model 2 (with CES)

load("~/Desktop/Megan/Research/IPV and Cognition Paper/IPV R Output/IPVandCognitionDataSet2.rda")

library(lme4)
library(lmerTest)

(mm2 = lmer(TrailsBlow ~ (Age + IPVstatus + Sex + Race + CES1)^5 + (Age | HNDid) + 
    (1 | subclass), data = IPVandCognitionDataSet2, REML = F))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by maximum likelihood ['merModLmerTest']
## Formula: TrailsBlow ~ (Age + IPVstatus + Sex + Race + CES1)^5 + (Age |      HNDid) + (1 | subclass) 
##    Data: IPVandCognitionDataSet2 
##      AIC      BIC   logLik deviance 
##   1416.8   1521.7   -671.4   1342.8 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 7.71e+01     
##           Age         3.69e+00 1.00
##  subclass (Intercept) 5.07e-04     
##  Residual             3.29e+01     
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## Fixed Effects:
##                           (Intercept)  
##                               100.306  
##                                   Age  
##                                 2.747  
##                            IPVstatus1  
##                                 5.694  
##                                SexMen  
##                               -30.238  
##                             RaceAfrAm  
##                                21.680  
##                                 CES11  
##                               -36.320  
##                        Age:IPVstatus1  
##                                 1.586  
##                            Age:SexMen  
##                                -0.362  
##                         Age:RaceAfrAm  
##                                -1.414  
##                             Age:CES11  
##                                -2.316  
##                     IPVstatus1:SexMen  
##                               147.826  
##                  IPVstatus1:RaceAfrAm  
##                               -51.769  
##                      IPVstatus1:CES11  
##                                -5.082  
##                      SexMen:RaceAfrAm  
##                                 8.801  
##                          SexMen:CES11  
##                               122.121  
##                       RaceAfrAm:CES11  
##                               100.474  
##                 Age:IPVstatus1:SexMen  
##                                 4.530  
##              Age:IPVstatus1:RaceAfrAm  
##                                -2.029  
##                  Age:IPVstatus1:CES11  
##                                -2.162  
##                  Age:SexMen:RaceAfrAm  
##                                 0.209  
##                      Age:SexMen:CES11  
##                                 3.682  
##                   Age:RaceAfrAm:CES11  
##                                 5.626  
##           IPVstatus1:SexMen:RaceAfrAm  
##                                97.700  
##               IPVstatus1:SexMen:CES11  
##                              -175.307  
##            IPVstatus1:RaceAfrAm:CES11  
##                               -47.501  
##                SexMen:RaceAfrAm:CES11  
##                               -87.560  
##       Age:IPVstatus1:SexMen:RaceAfrAm  
##                                -5.267  
##           Age:IPVstatus1:SexMen:CES11  
##                                -0.704  
##        Age:IPVstatus1:RaceAfrAm:CES11  
##                                 1.769  
##            Age:SexMen:RaceAfrAm:CES11  
##                                 2.393  
##     IPVstatus1:SexMen:RaceAfrAm:CES11  
##                                16.165  
## Age:IPVstatus1:SexMen:RaceAfrAm:CES11  
##                                -3.990

(st = step(mm2))
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: 
##  model has been refitted with REML=TRUE 
## 
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Random term (Age | HNDid) was eliminated because of having correlation +-1 or NaN
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Random term (Age + 0 | HNDid) was eliminated because of standard deviation being equal to 0 
## 
## Random term (1 | subclass) was eliminated because of standard deviation being equal to 0
## 
## Random effects:
##             Chi.sq Chi.DF elim.num p.value
## (1 | HNDid)  31.48      1     kept < 1e-07
## 
## Fixed effects:
##                               Sum Sq  Mean Sq NumDF  DenDF F.value
## Age:IPVstatus:Sex:Race:CES1   200.20   200.20     1  64.41  0.1331
## Age:IPVstatus:Sex:CES1         59.78    59.78     1  66.70  0.0490
## Age:IPVstatus:Race:CES1        42.52    42.52     1  81.47  0.0599
## Age:IPVstatus:CES1              5.83     5.83     1  89.01  0.0046
## IPVstatus:Sex:Race:CES1       101.16   101.16     1  54.03  0.1028
## IPVstatus:Race:CES1           186.84   186.84     1  48.68  0.0608
## Age:Sex:Race:CES1             730.73   730.73     1  98.47  0.4930
## Age:IPVstatus:Sex:Race        396.98   396.98     1 100.98  0.3572
## Age:IPVstatus:Sex             165.40   165.40     1 101.90  0.0642
## Age:Sex:CES1                 1213.50  1213.50     1 100.52  0.3773
## Age:Sex:Race                 1326.22  1326.22     1 102.95  0.2991
## Sex:Race:CES1                1049.67  1049.67     1  47.11  0.7183
## Age:IPVstatus:Race           1467.03  1467.03     1 104.64  0.7277
## Age:IPVstatus                 105.02   105.02     1 106.57  0.0010
## Age:Race:CES1                1322.63  1322.63     1 107.60  0.5925
## Race:CES1                      44.92    44.92     1  49.59  0.0000
## Age:CES1                      277.84   277.84     1 109.92  0.0167
## Age:Race                      378.23   378.23     1 108.44  0.0385
## Age:Sex                      1952.41  1952.41     1 108.75  1.7815
## IPVstatus:Sex:Race           1920.56  1920.56     1  50.76  2.6993
## IPVstatus:Race               1030.99  1030.99     1  51.80  0.0241
## Sex:Race                      191.51   191.51     1  53.25  0.3072
## IPVstatus:Sex:CES1           4085.23  4085.23     1  53.77  3.8489
## Sex:CES1                      454.72   454.72     1  54.69  0.3533
## IPVstatus:CES1               5233.81  5233.81     1  55.94  3.6517
## CES1                          840.00   840.00     1  57.13  0.0891
## Age                         13552.74 13552.74     1 119.16  9.3438
## IPVstatus                     685.17   685.17     1  57.71  1.2850
## Sex                          3581.71  3581.71     1  57.97  6.4636
## Race                         8506.49  8506.49     1  57.67  4.5432
## IPVstatus:Sex               12868.56 12868.56     1  57.66  9.2609
##                             elim.num Pr(>F)
## Age:IPVstatus:Sex:Race:CES1        1 0.7164
## Age:IPVstatus:Sex:CES1             2 0.8254
## Age:IPVstatus:Race:CES1            3 0.8072
## Age:IPVstatus:CES1                 4 0.9461
## IPVstatus:Sex:Race:CES1            5 0.7497
## IPVstatus:Race:CES1                6 0.8062
## Age:Sex:Race:CES1                  7 0.4843
## Age:IPVstatus:Sex:Race             8 0.5514
## Age:IPVstatus:Sex                  9 0.8004
## Age:Sex:CES1                      10 0.5404
## Age:Sex:Race                      11 0.5856
## Sex:Race:CES1                     12 0.4010
## Age:IPVstatus:Race                13 0.3956
## Age:IPVstatus                     14 0.9753
## Age:Race:CES1                     15 0.4432
## Race:CES1                         16 0.9986
## Age:CES1                          17 0.8975
## Age:Race                          18 0.8448
## Age:Sex                           19 0.1848
## IPVstatus:Sex:Race                20 0.1066
## IPVstatus:Race                    21 0.8772
## Sex:Race                          22 0.5817
## IPVstatus:Sex:CES1                23 0.0550
## Sex:CES1                          24 0.5547
## IPVstatus:CES1                    25 0.0611
## CES1                              26 0.7664
## Age                             kept 0.0028
## IPVstatus                       kept 0.2617
## Sex                             kept 0.0137
## Race                            kept 0.0373
## IPVstatus:Sex                   kept 0.0035
## 
## Least squares means:
##                        IPVstatus  Sex Race Estimate Standard Error   DF
## IPVstatus  0                 1.0   NA   NA     96.8           10.7 57.7
## IPVstatus  1                 2.0   NA   NA    117.3           15.0 57.7
## Sex  Women                    NA  2.0   NA     84.0           12.3 57.7
## Sex  Men                      NA  1.0   NA    130.1           13.7 57.9
## Race  White                   NA   NA  2.0     88.2           14.4 57.7
## Race  AfrAm                   NA   NA  1.0    125.9           11.1 57.7
## IPVstatus:Sex  0 Women       1.0  2.0   NA    101.3           14.7 57.8
## IPVstatus:Sex  1 Women       2.0  2.0   NA     66.6           19.5 57.7
## IPVstatus:Sex  0 Men         1.0  1.0   NA     92.2           15.2 57.8
## IPVstatus:Sex  1 Men         2.0  1.0   NA    168.0           22.6 57.8
##                        t-value Lower CI Upper CI p-value
## IPVstatus  0              9.07     75.4      118  <2e-16
## IPVstatus  1              7.83     87.3      147  <2e-16
## Sex  Women                6.83     59.4      109  <2e-16
## Sex  Men                  9.48    102.7      158  <2e-16
## Race  White               6.13     59.4      117  <2e-16
## Race  AfrAm              11.31    103.6      148  <2e-16
## IPVstatus:Sex  0 Women    6.89     71.9      131  <2e-16
## IPVstatus:Sex  1 Women    3.42     27.7      106  0.0011
## IPVstatus:Sex  0 Men      6.09     61.9      123  <2e-16
## IPVstatus:Sex  1 Men      7.43    122.7      213  <2e-16
## 
##  Differences of LSMEANS:
##                                 Estimate Standard Error     DF t-value
## IPVstatus 0-1                      -20.5          18.11   57.7   -1.13
## Sex Women-Men                      -46.1          18.15   58.0   -2.54
## Race White-AfrAm                   -37.6          17.66   57.7   -2.13
## IPVstatus:Sex  0 Women- 1 Women     34.7          24.19   57.7    1.43
## IPVstatus:Sex  0 Women- 0 Men        9.1          20.87   57.9    0.44
## IPVstatus:Sex  0 Women- 1 Men      -66.7          26.67   58.0   -2.50
## IPVstatus:Sex  1 Women- 0 Men      -25.6          24.56   57.7   -1.04
## IPVstatus:Sex  1 Women- 1 Men     -101.4          29.70   57.7   -3.41
## IPVstatus:Sex  0 Men- 1 Men        -75.8          27.01   57.7   -2.81
##                                 Lower CI Upper CI p-value
## IPVstatus 0-1                      -56.8    15.72   0.262
## Sex Women-Men                      -82.5    -9.81   0.014
## Race White-AfrAm                   -73.0    -2.29   0.037
## IPVstatus:Sex  0 Women- 1 Women    -13.7    83.15   0.157
## IPVstatus:Sex  0 Women- 0 Men      -32.7    50.89   0.664
## IPVstatus:Sex  0 Women- 1 Men     -120.0   -13.27   0.015
## IPVstatus:Sex  1 Women- 0 Men      -74.8    23.55   0.301
## IPVstatus:Sex  1 Women- 1 Men     -160.8   -41.92   0.001
## IPVstatus:Sex  0 Men- 1 Men       -129.8   -21.70   0.007
## 
## Final model:
## lme4::lmer(formula = TrailsBlow ~ Age + IPVstatus + Sex + Race + 
##     (1 | HNDid) + IPVstatus:Sex, data = IPVandCognitionDataSet2, 
##     REML = reml, contrasts = l)

Re-run the suggested final Model 2

(mm2 = lmer(TrailsBlow ~ Age + IPVstatus + Sex + Race + (Age | HNDid) + (1 | 
    subclass) + IPVstatus:Sex, data = IPVandCognitionDataSet2, REML = F))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by maximum likelihood ['merModLmerTest']
## Formula: TrailsBlow ~ Age + IPVstatus + Sex + Race + (Age | HNDid) + (1 |      subclass) + IPVstatus:Sex 
##    Data: IPVandCognitionDataSet2 
##      AIC      BIC   logLik deviance 
##     1392     1423     -685     1370 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 75.47        
##           Age          2.51    0.90
##  subclass (Intercept)  0.00        
##  Residual             33.70        
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## Fixed Effects:
##       (Intercept)                Age         IPVstatus1  
##             97.51               2.27             -33.60  
##            SexMen          RaceAfrAm  IPVstatus1:SexMen  
##            -15.51              41.37             118.05

summary(mm2)
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Linear mixed model fit by maximum likelihood ['merModLmerTest']
## Formula: TrailsBlow ~ Age + IPVstatus + Sex + Race + (Age | HNDid) + (1 |      subclass) + IPVstatus:Sex 
##    Data: IPVandCognitionDataSet2 
## 
##      AIC      BIC   logLik deviance 
##     1392     1423     -685     1370 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  HNDid    (Intercept) 5696.0   75.47        
##           Age            6.3    2.51    0.90
##  subclass (Intercept)    0.0    0.00        
##  Residual             1135.9   33.70        
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## 
## Fixed effects:
##                   Estimate Std. Error      df t value Pr(>|t|)
## (Intercept)         97.512     20.333  67.800    4.80  9.2e-06
## Age                  2.272      0.976  48.300    2.33  0.02409
## IPVstatus1         -33.596     21.949  61.500   -1.53  0.13098
## SexMen             -15.506     18.868  60.100   -0.82  0.41442
## RaceAfrAm           41.367     15.979  57.900    2.59  0.01216
## IPVstatus1:SexMen  118.054     33.374  62.500    3.54  0.00077
## 
## Correlation of Fixed Effects:
##             (Intr) Age    IPVst1 SexMen RcAfrA
## Age          0.585                            
## IPVstatus1  -0.452 -0.101                     
## SexMen      -0.501 -0.116  0.393              
## RaceAfrAm   -0.552 -0.040  0.085  0.053       
## IPVstts1:SM  0.313  0.076 -0.660 -0.569 -0.075

plot(st)

plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3


plot(mm2)

plot of chunk unnamed-chunk-3