HSIS Data [Sample]

library(ggplot2)
library(scales)
library(plyr)
library(psych)
describe(ca_1)
##            vars   n     mean      sd median  trimmed     mad  min   max
## desg_spd      1 243    47.18   13.01     50    47.26   22.24   25    65
## aadt          2 243 20294.91 9253.54  19655 19369.40 4084.56 4900 51000
## medwid        3 243     6.44    7.45      6     5.48    8.90    0    46
## med_type1*    4 243     3.18    1.17      4     3.25    1.48    1     5
##            range  skew kurtosis     se
## desg_spd      40 -0.13    -1.46   0.83
## aadt       46100  1.33     2.70 593.61
## medwid        46  1.22     2.49   0.48
## med_type1*     4 -0.43    -1.04   0.07
describe(il_1)
##            vars   n     mean       sd median  trimmed     mad  min   max
## spd_limt      1 491    36.56     6.78     35    35.79    7.41   30    55
## aadt          2 491 27002.24 11555.33  34700 28251.91 2372.16 5300 39800
## medwid        3 491     6.67    12.29      0     3.69    0.00    0    65
## med_type1*    4 491     2.35     1.04      3     2.34    0.00    1     4
##            range  skew kurtosis     se
## spd_limt      25  0.98     0.16   0.31
## aadt       34500 -0.63    -1.33 521.48
## medwid        65  2.90     9.33   0.55
## med_type1*     3 -0.33    -1.44   0.05
describe(mn_1)
##            vars   n     mean       sd median  trimmed      mad  min   max
## speed         1 358    39.65    10.77     40    39.50    14.83    0    70
## aadt          2 358 26347.45 11731.71  23700 25635.35 13195.14 6200 55220
## medwid        3 358     8.13    15.12      0     4.85     0.00    0    51
## med_type1*    4 358     2.94     0.59      3     2.95     0.00    1     4
##            range  skew kurtosis     se
## speed         70 -0.45     1.54   0.57
## aadt       49020  0.46    -1.10 620.04
## medwid        51  1.60     0.93   0.80
## med_type1*     3 -0.73     2.05   0.03
library(scales)


ca_2 <- ca_1[c(4)]
ca_3 = count(ca_2)


il_2 <- il_1[c(4)]
il_3 = count(il_2)


mn_2 <- mn_1[c(4)]
mn_3 = count(mn_2)


ca_a <- ggplot(ca_1, aes(x=factor(desg_spd)))
il_a <- ggplot(il_1, aes(x=factor(spd_limt)))
mn_a <- ggplot(mn_1, aes(x=factor(speed)))

ca_b <- ggplot(ca_1, aes(x=aadt))
il_b <- ggplot(il_1, aes(x=aadt))
mn_b <- ggplot(mn_1, aes(x=aadt))

ca_c <- ggplot(ca_1, aes(x=factor(medwid)))
il_c <- ggplot(il_1, aes(x=factor(medwid)))
mn_c <- ggplot(mn_1, aes(x=factor(medwid)))

ca_e <- ggplot(ca_1, aes(x=med_type1))
il_e <- ggplot(il_1, aes(x=med_type1))
mn_e <- ggplot(mn_1, aes(x=med_type1))

ca_d <- ggplot(ca_3, aes(x=reorder(med_type1, -freq), y= freq))
il_d <- ggplot(il_3, aes(x=reorder(med_type1, -freq), y= freq))
mn_d <- ggplot(mn_3, aes(x=reorder(med_type1, -freq), y= freq))



m1 <- ca_a+ geom_bar(aes(y = (..count..)/sum(..count..)), colour = "#4E2A1E", width=1,  fill = "#046C9A") +
  scale_y_continuous(labels=percent, limits=c(0,0.75))+
  labs(x="Speed Limit (mph) \n (a)", y="Percentage") +
  theme(text = element_text(size=30)) + ggtitle("California")+ theme_bw()


m2 <- il_a + geom_bar(aes(y = (..count..)/sum(..count..)), colour = "#4E2A1E", width=1,  fill = "#B40F20") +
  scale_y_continuous(labels=percent, limits=c(0,0.75))+
  labs(x="Speed Limit (mph) \n (b)", y="") +
  theme(text = element_text(size=30)) + ggtitle("Illinois")+ theme_bw()

m3 <- mn_a + geom_bar(aes(y = (..count..)/sum(..count..)), colour = "#4E2A1E", width=1,  fill = "#CEAB07") +
  scale_y_continuous(labels=percent, limits=c(0,0.75))+
  labs(x="Speed Limit (mph) \n (c)", y="") +
  theme(text = element_text(size=30)) + ggtitle("Minnesota")+ theme_bw()

m4 <- ca_b+ geom_histogram(aes(y = (..count..)/sum(..count..)), colour = "#4E2A1E", width=1,  fill = "#046C9A", 
                           breaks=c(0, 10000, 20000, 30000, 40000, 50000, 60000))+
  scale_y_continuous(labels=percent, limits=c(0,0.75))+
  labs(x="AADT (vph) \n (d)", y="Percentage") +
  theme(text = element_text(size=30)) + theme_bw()

m5 <- il_b + geom_histogram(aes(y = (..count..)/sum(..count..)), colour = "#4E2A1E", width=1,  fill = "#B40F20", 
                      breaks=c(0, 10000, 20000, 30000, 40000, 50000, 60000))+
  scale_y_continuous(labels=percent, limits=c(0,0.75))+
  labs(x="AADT (vph) \n (e)", y="") +
  theme(text = element_text(size=30)) + theme_bw()

m6 <- mn_b + geom_histogram(aes(y = (..count..)/sum(..count..)), colour = "#4E2A1E", width=1,  fill = "#CEAB07", 
                      breaks=c(0, 10000, 20000, 30000, 40000, 50000, 60000))+
  scale_y_continuous(labels=percent, limits=c(0,0.75))+
  labs(x="AADT (vph) \n (f)", y="") +
  theme(text = element_text(size=30)) + theme_bw()


m7 <- ca_c + geom_bar(aes(y = (..count..)/sum(..count..)), colour = "#4E2A1E", width=1,  fill = "#046C9A") +
  scale_y_continuous(labels=percent, limits=c(0,0.75))+
  labs(x="Median width (ft.)  \n (g)", y="Percentage") +
  theme(text = element_text(size=30)) + theme_bw()


m8 <- il_c + geom_bar(aes(y = (..count..)/sum(..count..)), colour = "#4E2A1E", width=1,  fill = "#B40F20") +
  scale_y_continuous(labels=percent, limits=c(0,0.75))+
  labs(x="Median width (ft.)  \n (h)", y="") +
  theme(text = element_text(size=30)) + theme_bw()

m9 <- mn_c + geom_bar(aes(y = (..count..)/sum(..count..)), colour = "#4E2A1E", width=1,  fill = "#CEAB07") +
  scale_y_continuous(labels=percent, limits=c(0,0.75))+
  labs(x="Median width (ft.)  \n (i)", y="") +
  theme(text = element_text(size=30)) + theme_bw()

m10 <- ca_e+  theme_bw()+ geom_bar(aes(y = (..count..)/sum(..count..)), colour = "#4E2A1E", width=1,  fill = "#046C9A") +
  scale_y_continuous(labels=percent, limits=c(0,0.75))+
  labs(x="Median Types  \n (j)", y="Percentage") +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))

m11 <- il_e+theme_bw()+ geom_bar(aes(y = (..count..)/sum(..count..)), colour = "#4E2A1E", width=1,  fill = "#B40F20") +
  scale_y_continuous(labels=percent, limits=c(0,0.75))+
  labs(x="Median Types  \n (k)", y="") +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))

m12 <- mn_e+theme_bw()+ geom_bar(aes(y = (..count..)/sum(..count..)), colour = "#4E2A1E", width=1,  fill = "#CEAB07") +
  scale_y_continuous(labels=percent, limits=c(0,0.75))+
  labs(x="Median Types  \n (l)", y="") +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))


library(grid)
grid.newpage()
pushViewport(viewport(layout = grid.layout(4, 3)))
vplayout <- function(x, y)
  viewport(layout.pos.row = x, layout.pos.col = y)
print(m1, vp = vplayout(1, 1))
print(m2, vp = vplayout(1, 2))
print(m3, vp = vplayout(1, 3))
print(m4, vp = vplayout(2, 1))
print(m5, vp = vplayout(2, 2))
print(m6, vp = vplayout(2, 3))
print(m7, vp = vplayout(3, 1))
print(m8, vp = vplayout(3, 2))
print(m9, vp = vplayout(3, 3))
print(m10, vp = vplayout(4, 1))
print(m11, vp = vplayout(4, 2))
print(m12, vp = vplayout(4, 3))