This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE
parameter was added to the code chunk to prevent printing of the R code that generated the plot.
#download data
install.packages(“Quandl”)
library(“Quandl”) library(tseries) #(1) data identification
unr <- Quandl(“FRED/UNRATE”, type=“zoo”)
summary(unr)
plot(unr)
str(unr)
head(unr)
tail(unr)
y <- unr
adf.test(y)
kpss.test(y)
d.y <-diff(y)
plot(d.y)
adf.test(d.y)
kpss.test(d.y) #in orginal model, we cannot regect H0 so there is stationarity, then we try first difference.in difference Y , we regect H0 so no stationarity.
par(mfrow=c(2,3)) plot(y, main=expression(y)) plot(ly, main=expression(log(y))) plot.new
plot(dly,main=expression(paste(Delta,“log(y)”))) plot(dly12,main=expression(paste(Delta[12],“log(y)”))) plot(dly12_1,main=expression(paste(Delta,Delta[12],“log(y)”)))
acf(coredata(y),type=“correlation”,lag=40,ylab=“”,main=“ACF”)
acf(coredata(y),type=“partial”,lag=40,ylab=“”,main=“PACF”)
acf(coredata(d.y),type=“correlation”,lag=40,ylab=“”,main=“ACF”)
acf(coredata(d.y),type=“partial”,lag=40,ylab=“”,main=“PACF”)
ARMA1<-arima(y,order=c(1,0,1)) ARMA1
tsdiag(ARMA1,gof.lag=12)
ARMA2<-arima(y,order=c(2,0,2)) ARMA2
tsdiag(ARMA2,gof.lag=12)
ARMA3<-arima(y,order=c(3,0,1)) ARMA3
tsdiag(ARMA3,gof.lag=12)
ARMA4<-arima(y,order=c(4,0,1)) ARMA4
tsdiag(ARMA4,gof.lag=12)
ARMA5<-arima(y,order=c(3,0,2)) ARMA5
tsdiag(ARMA5,gof.lag=12)
ARMA6<-arima(y,order=c(3,0,3)) ARMA6
tsdiag(ARMA6,gof.lag=12)
library(“forecast”)
ARMA2.fcast<-forecast(ARMA2,h=12) par(mfrow=c(2,2),cex=0.7,mar=c(2,4,3,1)) plot(ARMA2.fcast,xlim=c(2012,2018)) lines(y,12)
ARMA4.fcast<-forecast(ARMA4,h=12) par(mfrow=c(2,1),cex=0.7,mar=c(2,4,3,1)) plot(ARMA4.fcast,xlim=c(2012,2018)) lines(y,12)
ARMA6.fcast<-forecast(ARMA6,h=12) par(mfrow=c(2,1),cex=0.7,mar=c(2,4,3,1)) plot(ARMA6.fcast,xlim=c(2012,2018)) lines(y,12)