library(wikipediatrend)


library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
views<-wp_trend(page = "Subprime mortgage crisis",from = "2010-01-01",to = "2014-12-31",lang = "en",friendly = TRUE,requestFrom = "wp.trend.tester at wptt.wptt",userAgent = TRUE)
## Option 'requestFrom' is deprecated and will cause errors 
##             in futuere versions of the wp_trend() function. Please read 
##             the package vignette and/or README to learn about the new
##             set of options.
##             
##             Check wp_http_header() to know which information are send to 
##             stats.grok.se (R and package versions)
##             
## Option 'friendly' is deprecated and will cause errors 
##             in futuere versions of the wp_trend() function. Please read 
##             the package vignette and/or README to learn about the new
##             set of options.
##             
##             The package now is friendly by default.
##             
## Option 'userAgent' is deprecated and will cause errors 
##             in futuere versions of the wp_trend() function. Please read 
##             the package vignette and/or README to learn about the new
##             set of options.
##             
##             Check wp_http_header() to know which information are send to 
##             stats.grok.se (R and package versions)
##             
## http://stats.grok.se/json/en/201001/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201002/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201003/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201004/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201005/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201006/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201007/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201008/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201009/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201010/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201011/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201012/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201101/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201102/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201103/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201104/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201105/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201106/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201107/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201108/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201109/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201110/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201111/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201112/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201201/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201202/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201203/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201204/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201205/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201206/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201207/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201208/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201209/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201210/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201211/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201212/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201301/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201302/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201303/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201304/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201305/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201306/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201307/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201308/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201309/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201310/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201311/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201312/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201401/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201402/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201403/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201404/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201405/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201406/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201407/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201408/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201409/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201410/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201411/Subprime_mortgage%20crisis
## http://stats.grok.se/json/en/201412/Subprime_mortgage%20crisis
Count<-views[,1:2]

library(quantmod)
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## 
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## Loading required package: TTR
## Version 0.4-0 included new data defaults. See ?getSymbols.
startDate = as.Date("2010-01-01")

endDate = as.Date("2014-12-31") 

getSymbols("^BVSP", src = "yahoo", from = startDate, to = endDate) 
##     As of 0.4-0, 'getSymbols' uses env=parent.frame() and
##  auto.assign=TRUE by default.
## 
##  This  behavior  will be  phased out in 0.5-0  when the call  will
##  default to use auto.assign=FALSE. getOption("getSymbols.env") and 
##  getOptions("getSymbols.auto.assign") are now checked for alternate defaults
## 
##  This message is shown once per session and may be disabled by setting 
##  options("getSymbols.warning4.0"=FALSE). See ?getSymbols for more details.
## [1] "BVSP"
RSI3<-RSI(Op(BVSP), n= 3) 
#Calculate a 3-period relative strength index (RSI) off the open price

EMA5<-EMA(Op(BVSP),n=5) 
#Calculate a 5-period exponential moving average (EMA)
EMAcross<- Op(BVSP)-EMA5 
#Let’s explore the difference between the open price and our 5-period EMA


DEMA10<-DEMA(Cl(BVSP),n = 10, v = 1, wilder = FALSE)
DEMA10c<-Cl(BVSP) - DEMA10

MACD<-MACD(Op(BVSP),fast = 12, slow = 26, signal = 9) 
#Calculate a MACD with standard parameters

MACDsignal<-MACD[,2] 
#Grab just the signal line to use as our indicator.


SMI<-SMI(Op(BVSP),n=13,slow=25,fast=2,signal=9) 
#Stochastic Oscillator with standard parameters
SMI<-SMI[,1] 
#Grab just the oscillator to use as our indicator

BB<-BBands(Op(BVSP),n=20,sd=2)
BBp<-BB[,4]


CCI20<-CCI(BVSP[,3:5],n=20)
#A 20-period Commodity Channel Index calculated of the High/Low/Close of our data

# Return sign creation 

ClosingPrice<-Cl(BVSP)

Trend<-diff(ClosingPrice, lag = 1, differences = 1, arithmetic = TRUE, log = FALSE, na.pad = TRUE)

 
#Calculate the difference between the close price at T and close  price T-1
Class<-ifelse(Trend>0,"UP","DOWN") 
#Create a binary classification variable, the variable we are trying to predict.

DJIADF<-data.frame(date = index(BVSP),BVSP, row.names=NULL)



CombDF<-merge(Count,DJIADF, by.x='date', by.y='date')

DataSet<-data.frame(RSI3,EMAcross,MACDsignal,SMI,BBp,CCI20,DEMA10c) 

DataSet<-DataSet[-c(1:33),] 

Alldata<-cbind(DataSet,CombDF[34:1251,2])


Normalized <-function(x) {(x-min(x))/(max(x)-min(x))}
NormalizedData<-as.data.frame(lapply(Alldata,Normalized))

ClassDF<-data.frame(date = index(Class), Class, row.names=NULL)

AlldataNormalized<-data.frame(NormalizedData,ClassDF[34:1251,2])


colnames(AlldataNormalized)<-c("RSI3","EMAcross","MACDsignal","SMI","BBp","CCI20","DEMA10c","Views","Class") 


TrainingSet<-AlldataNormalized[1:1000,] 

TestSet<-AlldataNormalized[1001:1218,]

TrainClass<-TrainingSet[,9] 
TrainPred<-TrainingSet[,-9] 

TestClass<-TestSet[,9] 
TestPred<-TestSet[,-9] 
library(h2o)
## Loading required package: statmod
## 
## ----------------------------------------------------------------------
## 
## Your next step is to start H2O:
##     > h2o.init()
## 
## For H2O package documentation, ask for help:
##     > ??h2o
## 
## After starting H2O, you can use the Web UI at http://localhost:54321
## For more information visit http://docs.h2o.ai
## 
## ----------------------------------------------------------------------
## 
## 
## Attaching package: 'h2o'
## 
## The following objects are masked from 'package:stats':
## 
##     sd, var
## 
## The following objects are masked from 'package:base':
## 
##     %*%, apply, as.factor, as.numeric, colnames, colnames<-,
##     ifelse, %in%, is.factor, is.numeric, log, trunc
localH2O <- h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
## Successfully connected to http://localhost:54321/ 
## 
## R is connected to the H2O cluster: 
##     H2O cluster uptime:         2 hours 32 minutes 
##     H2O cluster version:        3.6.0.8 
##     H2O cluster name:           H2O_started_from_R_mitra2_uhd310 
##     H2O cluster total nodes:    1 
##     H2O cluster total memory:   0.66 GB 
##     H2O cluster total cores:    4 
##     H2O cluster allowed cores:  2 
##     H2O cluster healthy:        TRUE
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE, 
                    Xmx = '2g')
## Warning in h2o.init(ip = "localhost", port = 54321, startH2O = TRUE, Xmx =
## "2g"): Xmx is a deprecated parameter. Use `max_mem_size` and `min_mem_size`
## to set the memory boundaries. Using `Xmx` to set these.
## Successfully connected to http://localhost:54321/ 
## 
## R is connected to the H2O cluster: 
##     H2O cluster uptime:         2 hours 32 minutes 
##     H2O cluster version:        3.6.0.8 
##     H2O cluster name:           H2O_started_from_R_mitra2_uhd310 
##     H2O cluster total nodes:    1 
##     H2O cluster total memory:   0.66 GB 
##     H2O cluster total cores:    4 
##     H2O cluster allowed cores:  2 
##     H2O cluster healthy:        TRUE
TrainH2o<-as.h2o(TrainingSet, destination_frame = "TrainH2o")
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |=================================================================| 100%
TestH2o<-as.h2o(TestPred, destination_frame = "TestH2o")
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |=================================================================| 100%

deepnet

hidden_opt <- list(c(200,200), c(100,300,100), c(500,500,500))
l1_opt <- c(1e-5,1e-7)

hyper_params <- list(hidden = hidden_opt, l1 = l1_opt)


model_grid <- h2o.grid("deeplearning",hyper_params = hyper_params,x = 1:8,y = 9,training_frame = TrainH2o,distribution = "multinomial", activation = "TanhWithDropout")
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |===========                                                      |  17%
  |                                                                       
  |======================                                           |  33%
  |                                                                       
  |================================                                 |  50%
  |                                                                       
  |===========================================                      |  67%
  |                                                                       
  |======================================================           |  83%
  |                                                                       
  |=================================================================| 100%
model <- h2o.deeplearning(x = 1:8,y = 9,training_frame = TrainH2o, activation = "TanhWithDropout",hidden = c(50,50,50),epochs = 100)
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |======                                                           |  10%
  |                                                                       
  |=============                                                    |  20%
  |                                                                       
  |====================                                             |  30%
  |                                                                       
  |==========================                                       |  40%
  |                                                                       
  |================================                                 |  50%
  |                                                                       
  |=======================================                          |  60%
  |                                                                       
  |==============================================                   |  70%
  |                                                                       
  |====================================================             |  80%
  |                                                                       
  |==========================================================       |  90%
  |                                                                       
  |=================================================================| 100%
summary(model_grid)
## H2O Grid Details
## ================
## 
## Grid ID: Grid_DeepLearning_TrainH2o_model_R_1456225517775_10 
## Used hyper parameters: 
##   -  l1 
##   -  hidden 
## Number of models: 6 
## Number of failed models: 0 
## 
## Generated models
## ----------------
##     l1        hidden status_ok
##  1e-05 [500,500,500]        OK
##  1e-07     [200,200]        OK
##  1e-05 [100,300,100]        OK
##  1e-05     [200,200]        OK
##  1e-07 [100,300,100]        OK
##  1e-07 [500,500,500]        OK
##                                                    model_ids
##  Grid_DeepLearning_TrainH2o_model_R_1456225517775_10_model_4
##  Grid_DeepLearning_TrainH2o_model_R_1456225517775_10_model_1
##  Grid_DeepLearning_TrainH2o_model_R_1456225517775_10_model_2
##  Grid_DeepLearning_TrainH2o_model_R_1456225517775_10_model_0
##  Grid_DeepLearning_TrainH2o_model_R_1456225517775_10_model_3
##  Grid_DeepLearning_TrainH2o_model_R_1456225517775_10_model_5
## H2O Grid Summary
## ================
## 
## Grid ID: Grid_DeepLearning_TrainH2o_model_R_1456225517775_10 
## Used hyper parameters: 
##   -  l1 
##   -  hidden 
## Number of models: 6 
##   -  Grid_DeepLearning_TrainH2o_model_R_1456225517775_10_model_4 
##   -  Grid_DeepLearning_TrainH2o_model_R_1456225517775_10_model_1 
##   -  Grid_DeepLearning_TrainH2o_model_R_1456225517775_10_model_2 
##   -  Grid_DeepLearning_TrainH2o_model_R_1456225517775_10_model_0 
##   -  Grid_DeepLearning_TrainH2o_model_R_1456225517775_10_model_3 
##   -  Grid_DeepLearning_TrainH2o_model_R_1456225517775_10_model_5 
## 
## Number of failed models: 0
model_ids <- model_grid@model_ids
models <- lapply(model_ids, function(id) { h2o.getModel(id)})
h2o_yhat_test <- h2o.predict(model,TestH2o)
df_yhat_test <- as.data.frame(h2o_yhat_test)

prediction <-df_yhat_test[,1] 

confusionMatrix(prediction,TestClass)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction DOWN  UP
##       DOWN  103   5
##       UP     12  98
##                                           
##                Accuracy : 0.922           
##                  95% CI : (0.8781, 0.9539)
##     No Information Rate : 0.5275          
##     P-Value [Acc > NIR] : <2e-16          
##                                           
##                   Kappa : 0.8441          
##  Mcnemar's Test P-Value : 0.1456          
##                                           
##             Sensitivity : 0.8957          
##             Specificity : 0.9515          
##          Pos Pred Value : 0.9537          
##          Neg Pred Value : 0.8909          
##              Prevalence : 0.5275          
##          Detection Rate : 0.4725          
##    Detection Prevalence : 0.4954          
##       Balanced Accuracy : 0.9236          
##                                           
##        'Positive' Class : DOWN            
## 

svm with rbf kernel

 library(e1071)

 svm.model <- svm( Class~ ., data = TrainingSet, cost = 10, gamma = 1)

 svm.pred <- predict(svm.model, TestSet)
 
 confusionMatrix( svm.pred ,TestClass)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction DOWN UP
##       DOWN   97  4
##       UP     18 99
##                                           
##                Accuracy : 0.8991          
##                  95% CI : (0.8512, 0.9357)
##     No Information Rate : 0.5275          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.799           
##  Mcnemar's Test P-Value : 0.005578        
##                                           
##             Sensitivity : 0.8435          
##             Specificity : 0.9612          
##          Pos Pred Value : 0.9604          
##          Neg Pred Value : 0.8462          
##              Prevalence : 0.5275          
##          Detection Rate : 0.4450          
##    Detection Prevalence : 0.4633          
##       Balanced Accuracy : 0.9023          
##                                           
##        'Positive' Class : DOWN            
## 
 library(nnet)
 
nn <- nnet(Class ~ ., data =TrainingSet, size = 2, rang = 0.1,decay = 5e-4, maxit = 200)
## # weights:  21
## initial  value 695.275538 
## iter  10 value 591.434830
## iter  20 value 164.419634
## iter  30 value 122.711158
## iter  40 value 110.214706
## iter  50 value 107.699342
## iter  60 value 106.912322
## iter  70 value 106.143045
## iter  80 value 105.702423
## iter  90 value 105.574172
## iter 100 value 105.561188
## iter 110 value 105.557991
## iter 120 value 105.549244
## iter 130 value 105.547990
## final  value 105.547376 
## converged
nnPred<-predict(nn,TestSet,type = "class")

confusionMatrix(nnPred,TestClass)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction DOWN  UP
##       DOWN  100   5
##       UP     15  98
##                                           
##                Accuracy : 0.9083          
##                  95% CI : (0.8619, 0.9431)
##     No Information Rate : 0.5275          
##     P-Value [Acc > NIR] : < 2e-16         
##                                           
##                   Kappa : 0.8169          
##  Mcnemar's Test P-Value : 0.04417         
##                                           
##             Sensitivity : 0.8696          
##             Specificity : 0.9515          
##          Pos Pred Value : 0.9524          
##          Neg Pred Value : 0.8673          
##              Prevalence : 0.5275          
##          Detection Rate : 0.4587          
##    Detection Prevalence : 0.4817          
##       Balanced Accuracy : 0.9105          
##                                           
##        'Positive' Class : DOWN            
## 
library(randomForest)
## randomForest 4.6-12
## Type rfNews() to see new features/changes/bug fixes.
## 
## Attaching package: 'randomForest'
## 
## The following object is masked from 'package:ggplot2':
## 
##     margin
model.rf<-randomForest(Class ~ ., data=TrainingSet, ntree=1000,keep.forest=TRUE, importance=TRUE)

rf.pred <- predict(model.rf,TestSet )

confusionMatrix( rf.pred ,TestClass)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction DOWN  UP
##       DOWN  102   3
##       UP     13 100
##                                           
##                Accuracy : 0.9266          
##                  95% CI : (0.8835, 0.9575)
##     No Information Rate : 0.5275          
##     P-Value [Acc > NIR] : < 2e-16         
##                                           
##                   Kappa : 0.8535          
##  Mcnemar's Test P-Value : 0.02445         
##                                           
##             Sensitivity : 0.8870          
##             Specificity : 0.9709          
##          Pos Pred Value : 0.9714          
##          Neg Pred Value : 0.8850          
##              Prevalence : 0.5275          
##          Detection Rate : 0.4679          
##    Detection Prevalence : 0.4817          
##       Balanced Accuracy : 0.9289          
##                                           
##        'Positive' Class : DOWN            
##