SWAN


SBP Average


Call:
geeglm(formula = sbp_formula1, data = gee_data, id = gee_data$ID, 
    corstr = "ar1")

 Coefficients:
                                 Estimate  Std.err   Wald Pr(>|W|)    
(Intercept)                       56.7325   5.9844  89.87  < 2e-16 ***
AGE0                               0.7742   0.0865  80.10  < 2e-16 ***
bmi                                0.6402   0.0397 259.50  < 2e-16 ***
cum_avg_unfair                     0.2749   0.2555   1.16   0.2819    
diabete                           -1.6549   0.8327   3.95   0.0469 *  
edu_g                              1.3660   2.4733   0.31   0.5807    
ETHNICBLACK                       21.0900   7.8942   7.14   0.0075 ** 
ETHNICCHINE                       -8.1187  10.5920   0.59   0.4434    
ETHNICHISPA                       -7.5398  15.8386   0.23   0.6340    
ETHNICJAPAN                        2.8072   9.0215   0.10   0.7557    
heartat_stroke                    -1.3248   0.9820   1.82   0.1773    
med_bp                            -4.9284   0.5370  84.23  < 2e-16 ***
med_other                         -0.0762   0.3236   0.06   0.8138    
SITE12                             0.5561   0.9521   0.34   0.5592    
SITE13                             6.1878   1.0898  32.24  1.4e-08 ***
SITE14                            -2.0014   1.1076   3.27   0.0708 .  
SITE15                            -1.9174   1.0994   3.04   0.0811 .  
SITE16                             8.0823   1.2162  44.16  3.0e-11 ***
SITE17                            -1.2582   0.9868   1.63   0.2023    
statusx                            0.1312   0.0989   1.76   0.1847    
smoker                             1.3833   0.6239   4.92   0.0266 *  
visit                              0.6189   0.0492 158.35  < 2e-16 ***
cum_avg_unfair:edu_g              -0.1914   0.1493   1.64   0.1998    
cum_avg_unfair:ETHNICBLACK        -0.6202   0.4315   2.07   0.1506    
cum_avg_unfair:ETHNICCHINE         0.4943   0.5759   0.74   0.3907    
cum_avg_unfair:ETHNICHISPA         0.5920   1.2767   0.22   0.6429    
cum_avg_unfair:ETHNICJAPAN         0.1573   0.5390   0.09   0.7705    
edu_g:ETHNICBLACK                -12.0316   5.1765   5.40   0.0201 *  
edu_g:ETHNICCHINE                  8.2043   6.7467   1.48   0.2240    
edu_g:ETHNICHISPA                  6.5357  14.5822   0.20   0.6540    
edu_g:ETHNICJAPAN                  0.1599   5.5551   0.00   0.9770    
cum_avg_unfair:edu_g:ETHNICBLACK   0.5704   0.2845   4.02   0.0449 *  
cum_avg_unfair:edu_g:ETHNICCHINE  -0.3771   0.3664   1.06   0.3034    
cum_avg_unfair:edu_g:ETHNICHISPA  -0.3819   1.1926   0.10   0.7488    
cum_avg_unfair:edu_g:ETHNICJAPAN  -0.0495   0.3282   0.02   0.8802    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)      189    6.09

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.851 0.00704
Number of clusters:   2200   Maximum cluster size: 12 

Call:
geeglm(formula = sbp_formula2, data = gee_data, id = gee_data$ID, 
    corstr = "ar1")

 Coefficients:
                             Estimate Std.err   Wald Pr(>|W|)    
(Intercept)                   60.2148  4.5012 178.96  < 2e-16 ***
AGE0                           0.7747  0.0862  80.72  < 2e-16 ***
bmi                            0.6448  0.0398 262.07  < 2e-16 ***
chronicity                     2.0954  2.9210   0.51    0.473    
diabete                       -1.6520  0.8326   3.94    0.047 *  
edu_g                         -1.1434  0.8874   1.66    0.198    
ETHNICBLACK                    9.8923  3.8902   6.47    0.011 *  
ETHNICCHINE                   -0.8962  4.9027   0.03    0.855    
ETHNICHISPA                   -0.8873  3.9095   0.05    0.820    
ETHNICJAPAN                    6.9570  3.7787   3.39    0.066 .  
heartat_stroke                -1.3170  0.9817   1.80    0.180    
med_bp                        -4.9214  0.5377  83.78  < 2e-16 ***
med_other                     -0.0757  0.3241   0.05    0.815    
SITE12                         0.8258  0.9415   0.77    0.380    
SITE13                         5.9875  1.0794  30.77  2.9e-08 ***
SITE14                        -1.9724  1.1038   3.19    0.074 .  
SITE15                        -1.8863  1.0953   2.97    0.085 .  
SITE16                         8.0945  1.2044  45.17  1.8e-11 ***
SITE17                        -1.2450  0.9787   1.62    0.203    
statusx                        0.1300  0.0989   1.73    0.189    
smoker                         1.3711  0.6208   4.88    0.027 *  
visit                          0.6164  0.0490 158.40  < 2e-16 ***
chronicity:edu_g              -1.5581  1.6817   0.86    0.354    
chronicity:ETHNICBLACK        -0.0526  5.8871   0.00    0.993    
chronicity:ETHNICCHINE         3.5295  7.1559   0.24    0.622    
chronicity:ETHNICHISPA         0.7161  8.5634   0.01    0.933    
chronicity:ETHNICJAPAN        -4.5419  8.6633   0.27    0.600    
edu_g:ETHNICBLACK             -0.7000  2.4678   0.08    0.777    
edu_g:ETHNICCHINE              2.3024  2.8838   0.64    0.425    
edu_g:ETHNICHISPA              2.0118  3.1625   0.40    0.525    
edu_g:ETHNICJAPAN             -2.6394  2.2841   1.34    0.248    
chronicity:edu_g:ETHNICBLACK  -1.5694  3.7588   0.17    0.676    
chronicity:edu_g:ETHNICCHINE  -2.1019  4.4538   0.22    0.637    
chronicity:edu_g:ETHNICHISPA   0.5500  6.7784   0.01    0.935    
chronicity:edu_g:ETHNICJAPAN   5.5561  5.1418   1.17    0.280    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)      188    6.07

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha     0.85 0.00724
Number of clusters:   2200   Maximum cluster size: 12 

DBP Average


Call:
geeglm(formula = dbp_formula1, data = gee_data, id = gee_data$ID, 
    corstr = "ar1")

 Coefficients:
                                 Estimate  Std.err   Wald    Pr(>|W|)    
(Intercept)                      48.02252  3.80165 159.57     < 2e-16 ***
AGE0                              0.19871  0.05373  13.68     0.00022 ***
bmi                               0.35875  0.02492 207.29     < 2e-16 ***
cum_avg_unfair                    0.18807  0.16206   1.35     0.24584    
diabete                          -1.27248  0.52709   5.83     0.01577 *  
edu_g                             1.55776  1.60152   0.95     0.33072    
ETHNICBLACK                      10.02014  4.92485   4.14     0.04189 *  
ETHNICCHINE                      -1.24420  7.12099   0.03     0.86130    
ETHNICHISPA                       8.05469  8.79663   0.84     0.35985    
ETHNICJAPAN                       4.60653  5.80566   0.63     0.42751    
heartat_stroke                   -0.30425  0.66493   0.21     0.64726    
med_bp                           -2.95777  0.34142  75.05     < 2e-16 ***
med_other                         0.01528  0.22880   0.00     0.94675    
SITE12                            7.52824  0.54662 189.68     < 2e-16 ***
SITE13                            8.05977  0.62485 166.38     < 2e-16 ***
SITE14                            1.80437  0.65998   7.47     0.00626 ** 
SITE15                            3.94374  0.65738  35.99 0.000000002 ***
SITE16                            8.99414  0.79954 126.54     < 2e-16 ***
SITE17                            3.01979  0.55605  29.49 0.000000056 ***
statusx                          -0.00600  0.06957   0.01     0.93121    
smoker                            0.12278  0.40946   0.09     0.76428    
visit                             0.08068  0.03246   6.18     0.01293 *  
cum_avg_unfair:edu_g             -0.12526  0.09551   1.72     0.18971    
cum_avg_unfair:ETHNICBLACK       -0.26961  0.27022   1.00     0.31840    
cum_avg_unfair:ETHNICCHINE        0.09315  0.38310   0.06     0.80789    
cum_avg_unfair:ETHNICHISPA       -0.46983  0.72547   0.42     0.51722    
cum_avg_unfair:ETHNICJAPAN        0.00489  0.35257   0.00     0.98894    
edu_g:ETHNICBLACK                -6.91679  3.18320   4.72     0.02979 *  
edu_g:ETHNICCHINE                 3.72582  4.40658   0.71     0.39782    
edu_g:ETHNICHISPA                -8.20439  7.57741   1.17     0.27892    
edu_g:ETHNICJAPAN                -2.06391  3.83343   0.29     0.59030    
cum_avg_unfair:edu_g:ETHNICBLACK  0.29886  0.17540   2.90     0.08841 .  
cum_avg_unfair:edu_g:ETHNICCHINE -0.13394  0.23769   0.32     0.57308    
cum_avg_unfair:edu_g:ETHNICHISPA  0.62975  0.64027   0.97     0.32533    
cum_avg_unfair:edu_g:ETHNICJAPAN  0.07831  0.23045   0.12     0.73399    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)     80.3     2.1

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha     0.82 0.00795
Number of clusters:   2200   Maximum cluster size: 12 

Call:
geeglm(formula = dbp_formula2, data = gee_data, id = gee_data$ID, 
    corstr = "ar1")

 Coefficients:
                             Estimate Std.err   Wald    Pr(>|W|)    
(Intercept)                   50.7132  2.8526 316.06     < 2e-16 ***
AGE0                           0.2014  0.0539  13.96     0.00019 ***
bmi                            0.3602  0.0251 206.24     < 2e-16 ***
chronicity                     0.6452  1.7655   0.13     0.71477    
diabete                       -1.2766  0.5263   5.88     0.01529 *  
edu_g                         -0.2960  0.5571   0.28     0.59513    
ETHNICBLACK                    3.9533  2.2693   3.03     0.08149 .  
ETHNICCHINE                    0.1295  3.5600   0.00     0.97097    
ETHNICHISPA                   -0.8576  2.4177   0.13     0.72281    
ETHNICJAPAN                    5.8596  2.2950   6.52     0.01067 *  
heartat_stroke                -0.3044  0.6654   0.21     0.64735    
med_bp                        -2.9643  0.3415  75.35     < 2e-16 ***
med_other                      0.0160  0.2287   0.00     0.94419    
SITE12                         7.5751  0.5435 194.22     < 2e-16 ***
SITE13                         7.9438  0.6221 163.03     < 2e-16 ***
SITE14                         1.7619  0.6572   7.19     0.00734 ** 
SITE15                         3.9336  0.6561  35.95 0.000000002 ***
SITE16                         8.9512  0.7894 128.58     < 2e-16 ***
SITE17                         2.9907  0.5540  29.14 0.000000067 ***
statusx                       -0.0059  0.0696   0.01     0.93244    
smoker                         0.1173  0.4084   0.08     0.77391    
visit                          0.0793  0.0323   6.03     0.01405 *  
chronicity:edu_g              -0.4896  1.0408   0.22     0.63807    
chronicity:ETHNICBLACK         2.2138  3.4761   0.41     0.52422    
chronicity:ETHNICCHINE         1.3519  4.9924   0.07     0.78655    
chronicity:ETHNICHISPA         8.6289  5.4930   2.47     0.11621    
chronicity:ETHNICJAPAN        -3.9971  5.1400   0.60     0.43678    
edu_g:ETHNICBLACK             -0.9529  1.4490   0.43     0.51077    
edu_g:ETHNICCHINE              1.6997  2.0268   0.70     0.40167    
edu_g:ETHNICHISPA              1.9436  1.9035   1.04     0.30723    
edu_g:ETHNICJAPAN             -2.0995  1.4371   2.13     0.14405    
chronicity:edu_g:ETHNICBLACK  -0.9141  2.2353   0.17     0.68260    
chronicity:edu_g:ETHNICCHINE  -1.3259  2.9881   0.20     0.65725    
chronicity:edu_g:ETHNICHISPA  -6.2694  4.1589   2.27     0.13170    
chronicity:edu_g:ETHNICJAPAN   3.9900  3.2229   1.53     0.21570    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)     80.4    2.12

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha     0.82 0.00809
Number of clusters:   2200   Maximum cluster size: 12 

HTN


Call:
geeglm(formula = htn_formula1, family = poisson(link = "log"), 
    data = gee_data, id = gee_data$ID, corstr = "ar1")

 Coefficients:
                                 Estimate  Std.err   Wald Pr(>|W|)    
(Intercept)                      -7.54378  0.83934  80.78  < 2e-16 ***
AGE0                              0.06513  0.01027  40.19  2.3e-10 ***
bmi                               0.03563  0.00398  80.34  < 2e-16 ***
cum_avg_unfair                    0.05825  0.03796   2.35  0.12494    
diabete                           0.08038  0.06610   1.48  0.22395    
edu_g                             0.48311  0.41365   1.36  0.24284    
ETHNICBLACK                       2.22434  0.93540   5.65  0.01741 *  
ETHNICCHINE                       1.57025  1.64217   0.91  0.33897    
ETHNICHISPA                       3.46895  1.73581   3.99  0.04567 *  
ETHNICJAPAN                       0.63416  1.54420   0.17  0.68131    
heartat_stroke                    0.02932  0.09988   0.09  0.76910    
med_other                         0.10363  0.03852   7.24  0.00714 ** 
SITE12                            0.01102  0.09071   0.01  0.90335    
SITE13                            0.18471  0.09224   4.01  0.04524 *  
SITE14                           -0.41222  0.17453   5.58  0.01818 *  
SITE15                           -0.17836  0.15290   1.36  0.24341    
SITE16                            0.36972  0.20037   3.40  0.06502 .  
SITE17                           -0.11811  0.09893   1.43  0.23253    
statusx                           0.01026  0.01254   0.67  0.41305    
smoker                           -0.05969  0.06875   0.75  0.38527    
visit                             0.10785  0.00581 345.11  < 2e-16 ***
cum_avg_unfair:edu_g             -0.03178  0.02419   1.73  0.18900    
cum_avg_unfair:ETHNICBLACK       -0.08801  0.05117   2.96  0.08547 .  
cum_avg_unfair:ETHNICCHINE       -0.05523  0.08587   0.41  0.52011    
cum_avg_unfair:ETHNICHISPA       -0.19699  0.08740   5.08  0.02420 *  
cum_avg_unfair:ETHNICJAPAN        0.00361  0.09325   0.00  0.96910    
edu_g:ETHNICBLACK                -1.13344  0.59689   3.61  0.05758 .  
edu_g:ETHNICCHINE                -1.11279  1.12999   0.97  0.32473    
edu_g:ETHNICHISPA                -3.79980  1.51308   6.31  0.01203 *  
edu_g:ETHNICJAPAN                -0.33340  1.03988   0.10  0.74850    
cum_avg_unfair:edu_g:ETHNICBLACK  0.06002  0.03272   3.36  0.06662 .  
cum_avg_unfair:edu_g:ETHNICCHINE  0.05565  0.05863   0.90  0.34256    
cum_avg_unfair:edu_g:ETHNICHISPA  0.24451  0.06677  13.41  0.00025 ***
cum_avg_unfair:edu_g:ETHNICJAPAN  0.00436  0.06264   0.00  0.94447    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)    0.708  0.0614

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.835  0.0224
Number of clusters:   2200   Maximum cluster size: 12 

Risk Ratios:
                                 Estimate    Wald Pr(>|W|)
AGE0                                1.067  40.189    0.000
bmi                                 1.036  80.337    0.000
cum_avg_unfair                      1.060   2.354    0.125
diabete                             1.084   1.479    0.224
edu_g                               1.621   1.364    0.243
ETHNICBLACK                         9.247   5.655    0.017
ETHNICCHINE                         4.808   0.914    0.339
ETHNICHISPA                        32.103   3.994    0.046
ETHNICJAPAN                         1.885   0.169    0.681
heartat_stroke                      1.030   0.086    0.769
med_other                           1.109   7.238    0.007
SITE12                              1.011   0.015    0.903
SITE13                              1.203   4.010    0.045
SITE14                              0.662   5.579    0.018
SITE15                              0.837   1.361    0.243
SITE16                              1.447   3.405    0.065
SITE17                              0.889   1.425    0.233
statusx                             1.010   0.670    0.413
smoker                              0.942   0.754    0.385
visit                               1.114 345.106    0.000
cum_avg_unfair:edu_g                0.969   1.725    0.189
cum_avg_unfair:ETHNICBLACK          0.916   2.958    0.085
cum_avg_unfair:ETHNICCHINE          0.946   0.414    0.520
cum_avg_unfair:ETHNICHISPA          0.821   5.080    0.024
cum_avg_unfair:ETHNICJAPAN          1.004   0.002    0.969
edu_g:ETHNICBLACK                   0.322   3.606    0.058
edu_g:ETHNICCHINE                   0.329   0.970    0.325
edu_g:ETHNICHISPA                   0.022   6.307    0.012
edu_g:ETHNICJAPAN                   0.716   0.103    0.749
cum_avg_unfair:edu_g:ETHNICBLACK    1.062   3.364    0.067
cum_avg_unfair:edu_g:ETHNICCHINE    1.057   0.901    0.343
cum_avg_unfair:edu_g:ETHNICHISPA    1.277  13.409    0.000
cum_avg_unfair:edu_g:ETHNICJAPAN    1.004   0.005    0.944

Call:
geeglm(formula = htn_formula2, family = poisson(link = "log"), 
    data = gee_data, id = gee_data$ID, corstr = "ar1")

 Coefficients:
                             Estimate  Std.err   Wald Pr(>|W|)    
(Intercept)                  -6.63882  0.55995 140.57  < 2e-16 ***
AGE0                          0.06577  0.01020  41.55  1.2e-10 ***
bmi                           0.03577  0.00397  81.25  < 2e-16 ***
chronicity                    0.04450  0.41706   0.01   0.9150    
diabete                       0.08169  0.06659   1.50   0.2200    
edu_g                        -0.05510  0.15014   0.13   0.7136    
ETHNICBLACK                   0.81492  0.34054   5.73   0.0167 *  
ETHNICCHINE                   1.01723  0.74338   1.87   0.1712    
ETHNICHISPA                  -0.31190  0.69798   0.20   0.6550    
ETHNICJAPAN                   0.61164  0.52085   1.38   0.2403    
heartat_stroke                0.02765  0.10080   0.08   0.7839    
med_other                     0.10685  0.03885   7.57   0.0059 ** 
SITE12                        0.01654  0.09054   0.03   0.8550    
SITE13                        0.18126  0.09191   3.89   0.0486 *  
SITE14                       -0.43355  0.17250   6.32   0.0120 *  
SITE15                       -0.16955  0.15305   1.23   0.2679    
SITE16                        0.34212  0.19750   3.00   0.0832 .  
SITE17                       -0.12486  0.09809   1.62   0.2030    
statusx                       0.00971  0.01257   0.60   0.4401    
smoker                       -0.05945  0.06786   0.77   0.3810    
visit                         0.10758  0.00579 344.71  < 2e-16 ***
chronicity:edu_g              0.04046  0.24988   0.03   0.8714    
chronicity:ETHNICBLACK       -0.19361  0.54498   0.13   0.7224    
chronicity:ETHNICCHINE       -0.67708  1.09752   0.38   0.5373    
chronicity:ETHNICHISPA        4.11994  2.14153   3.70   0.0544 .  
chronicity:ETHNICJAPAN        0.14592  0.98127   0.02   0.8818    
edu_g:ETHNICBLACK            -0.08060  0.21809   0.14   0.7117    
edu_g:ETHNICCHINE            -0.36282  0.46560   0.61   0.4358    
edu_g:ETHNICHISPA             0.34200  0.58770   0.34   0.5606    
edu_g:ETHNICJAPAN            -0.25958  0.34932   0.55   0.4574    
chronicity:edu_g:ETHNICBLACK -0.00983  0.34486   0.00   0.9773    
chronicity:edu_g:ETHNICCHINE  0.43670  0.69989   0.39   0.5327    
chronicity:edu_g:ETHNICHISPA -3.39470  2.03223   2.79   0.0948 .  
chronicity:edu_g:ETHNICJAPAN  0.01746  0.66438   0.00   0.9790    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated Scale Parameters:
            Estimate Std.err
(Intercept)    0.706  0.0585

Correlation: Structure = ar1  Link = identity 

Estimated Correlation Parameters:
      Estimate Std.err
alpha    0.834  0.0217
Number of clusters:   2200   Maximum cluster size: 12 

Risk Ratios:
                             Estimate    Wald Pr(>|W|)
AGE0                            1.068  41.548    0.000
bmi                             1.036  81.254    0.000
chronicity                      1.046   0.011    0.915
diabete                         1.085   1.505    0.220
edu_g                           0.946   0.135    0.714
ETHNICBLACK                     2.259   5.726    0.017
ETHNICCHINE                     2.766   1.872    0.171
ETHNICHISPA                     0.732   0.200    0.655
ETHNICJAPAN                     1.843   1.379    0.240
heartat_stroke                  1.028   0.075    0.784
med_other                       1.113   7.566    0.006
SITE12                          1.017   0.033    0.855
SITE13                          1.199   3.889    0.049
SITE14                          0.648   6.317    0.012
SITE15                          0.844   1.227    0.268
SITE16                          1.408   3.000    0.083
SITE17                          0.883   1.620    0.203
statusx                         1.010   0.596    0.440
smoker                          0.942   0.767    0.381
visit                           1.114 344.705    0.000
chronicity:edu_g                1.041   0.026    0.871
chronicity:ETHNICBLACK          0.824   0.126    0.722
chronicity:ETHNICCHINE          0.508   0.381    0.537
chronicity:ETHNICHISPA         61.555   3.701    0.054
chronicity:ETHNICJAPAN          1.157   0.022    0.882
edu_g:ETHNICBLACK               0.923   0.137    0.712
edu_g:ETHNICCHINE               0.696   0.607    0.436
edu_g:ETHNICHISPA               1.408   0.339    0.561
edu_g:ETHNICJAPAN               0.771   0.552    0.457
chronicity:edu_g:ETHNICBLACK    0.990   0.001    0.977
chronicity:edu_g:ETHNICCHINE    1.548   0.389    0.533
chronicity:edu_g:ETHNICHISPA    0.034   2.790    0.095
chronicity:edu_g:ETHNICJAPAN    1.018   0.001    0.979