Aim of this worksheet

After completing this worksheet, you should have a basic familiarity with the most useful types of data structures in R (lists, data frames, and matrices). You should also be able to subset any of these data structures using the common subsetting operators ([, [[, and $).

You may find the chapters on data structures and subsetting from Hadley Wickham’s Advanced R book to be helpful.

Subsetting vectors

In the previous worksheet you learned about vectors. Vectors hold a one-dimensional set of homogenous values. By homogenous we mean that that the values all have to be the same type (integer, numeric, logical, and so on) and you can’t have both, say, numeric and logical values in the same vector. By one-dimensional we mean that there can be more than one element accessed by a single index. For example, R includes a character vector of the letters in the English alphabet, helpfully called, letters.

letters
##  [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q"
## [18] "r" "s" "t" "u" "v" "w" "x" "y" "z"

The letters object is a character vector because everything inside of it is a character vector.

class(letters)
## [1] "character"

And it has twenty-six elements:

length(letters)
## [1] 26

We can subset a vector using the [ operator (actually, it’s a function). For instance, we can get the first element like this:

letters[1]
## [1] "a"
  1. How would you get the twenty-fifth element?
letters[25]
## [1] "y"

We can get a range of values like so. Notice that we can get all the numbers one to five like this:

1:5
## [1] 1 2 3 4 5

So, we can get the first five letters like this:

letters[1:5]
## [1] "a" "b" "c" "d" "e"
  1. Can you get the tenth through twelfth letters?
letters[10:12]
## [1] "j" "k" "l"

You can get an arbitrary subset by creating a numeric (or integer) vector. Here we get the first, tenth, and twelfth letters.

letters[c(1, 10, 12)]
## [1] "a" "j" "l"

We can also do this by creating a variable and using it to do the subsetting.

what_i_want <- c(1, 3, 5, 7)
letters[what_i_want]
## [1] "a" "c" "e" "g"
  1. Create a variable with the even numbers and then subset the letters variable to get the even letters (e.g., the second, fourth, etc.)
even_numbers <-c(2, 4, 6, 8)
letters[even_numbers]
## [1] "b" "d" "f" "h"
  1. Bonus: can you use the seq() function (look it up with ?seq) to get the even letters in a more clever way?
letters[seq(2, 26, by = 2)]
##  [1] "b" "d" "f" "h" "j" "l" "n" "p" "r" "t" "v" "x" "z"

In addition to values, vectors can also have names. For example, let’s create a variable with the numbers 1 to 5, then give those values some names.

myvar <- 1:5
names(myvar) <- letters[1:5]
myvar
## a b c d e 
## 1 2 3 4 5

Now we can also subset the vector based on the names:

myvar["c"]
## c 
## 3
  1. Below is a vector of rankings for songs. Give the numeric vector names, which should be the titles of songs. Finally, subset the vector by the title of one of the songs to retrieve its ranking.
song_rankings <- c(10, 8.4, 6, 8.2, 4)

names (song_rankings) <- c( "Rock of Ages", "Dude Looks Like A Lady", "Welcome to the Jungle", "Highway to Hell", "Here I Go Again")

song_rankings
##           Rock of Ages Dude Looks Like A Lady  Welcome to the Jungle 
##                   10.0                    8.4                    6.0 
##        Highway to Hell        Here I Go Again 
##                    8.2                    4.0

Matrices

Vectors are one-dimensional and homogeneous. Matrices are two-dimensional and homogenous, so they have the same kind of value, but have rows and columns as well. A matrix can be used for all kinds of problems in digital history. For now, let’s imagine we have four cites, A, B, C, and D, and have measured the distances between them. For instance, the distance from A to B is 2. We can represent those distances as a matrix with 4 columns and 4 rows, where the names of the rows and columns are the cities.

city_distances <- matrix(c(0, 2, 8, 3, 2, 0, 6, 1, 8, 6, 0, 4, 3, 1, 4, 0),
                         nrow = 4, ncol = 4)
rownames(city_distances) <- LETTERS[1:4]
colnames(city_distances) <- LETTERS[1:4]
city_distances
##   A B C D
## A 0 2 8 3
## B 2 0 6 1
## C 8 6 0 4
## D 3 1 4 0

A matrix can be subsetted in the same way that a vector can be subsetted. (Because it is a vector—just a vector with two dimensions.) For instance, we can get the third element of the matrix.

city_distances[3]
## [1] 8
  1. Now get the fifth element of the matrix.
city_distances[5]
## [1] 2

But matrices are more useful when we subset them by row and column. For instance, here is the value contained in the cell for the first row and third column.

city_distances[1, 3]
## [1] 8
  1. Now get the value for the third row and the first column.
city_distances[3, 1]
## [1] 8
  1. What cities are we getting the distances for when we look for the third row and first column?

We are getting the distances for A, which is 8.

If a matrix has row and column names, we can subset the vector by that. For instance, here is the distance between cities B and D.

city_distances["B","D"]
## [1] 1
  1. What is the distance between cities D and C?
city_distances["D","C"]
## [1] 4
  1. What is the distance between city A and cities B, C, and D? (Hint: think back to the kinds of subsetting that we did with vectors.)
city_distances[c("A", "B", "C", "D")]
## [1] NA NA NA NA

Data frames

The most useful data structure in R is the data frame. Think of a data frame like a spreadsheet that holds any kind of tabular data. It is two dimensional, like a matrix; unlike a matrix, it is homogenous in that the columns can hold different kinds of data. While other langauges have add on libraries that allow for data structures like this, in R data frames are a first class citizen.

Let’s get a data frame from the historydata package. (If we also load dplyr, we will get nicer printing.)

library(historydata)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
naval_promotions
## Source: local data frame [5,705 x 5]
## 
##       id                      name generation       rank       date
##    (int)                     (chr)      (int)     (fctr)      (chr)
## 1      1               Abbot, Joel          3 midshipman 1812-06-18
## 2      2            Abbot, Trevett          4 midshipman 1848-10-13
## 3      3             Abbott, Isaac          4 midshipman 1820-05-10
## 4      4        Abbott, J. Francis          4 midshipman 1837-12-27
## 5      5          Abbott, James W.          4 midshipman 1822-05-01
## 6      6         Abbott, Thomas C.          3 midshipman 1814-12-06
## 7      7            Abbott, Walter          3 midshipman 1812-01-01
## 8      8        Abbott, William A.          4 midshipman 1848-10-13
## 9      9 Abercrombie, Alexander R.          4 midshipman 1841-10-19
## 10    10         Abercrombie, J.B.          4 midshipman 1817-01-01
## ..   ...                       ...        ...        ...        ...

We can use str() to get a different look at the data.

str(naval_promotions)
## Classes 'tbl_df', 'tbl' and 'data.frame':    5705 obs. of  5 variables:
##  $ id        : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ name      : chr  "Abbot, Joel" "Abbot, Trevett" "Abbott, Isaac" "Abbott, J. Francis" ...
##  $ generation: int  3 4 4 4 4 3 3 4 4 4 ...
##  $ rank      : Factor w/ 5 levels "midshipman","lieutenant",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ date      : chr  "1812-06-18" "1848-10-13" "1820-05-10" "1837-12-27" ...
  1. How many rows and columns does the data frame have? What are the different types of vectors contained in it?

There are five rows and five columns in the data frame. The different vectors include the id, name, generation, rank, and date of naval promotions.

We can use the [ subset function to get access to rows and columns, just like we did with matrices. For instance, here we ask for just the first row and the columned named "name":

naval_promotions[1, 5]
## Source: local data frame [1 x 1]
## 
##         date
##        (chr)
## 1 1812-06-18
naval_promotions[3, "name"]
## Source: local data frame [1 x 1]
## 
##            name
##           (chr)
## 1 Abbott, Isaac

We can also ask for the entire first row (note the comma):

naval_promotions[1, ]
## Source: local data frame [1 x 5]
## 
##      id        name generation       rank       date
##   (int)       (chr)      (int)     (fctr)      (chr)
## 1     1 Abbot, Joel          3 midshipman 1812-06-18
  1. What is the name of the person in the tenth row? What was the date he became that rank?
naval_promotions[10, "name"]
## Source: local data frame [1 x 1]
## 
##                name
##               (chr)
## 1 Abercrombie, J.B.

Because data frames are organized by column, it is possible to extract an entire column using the $ function. Here, let’s get just the names of the people. (We’ll limit it using head() so we don’t print out all of them.)

head(naval_promotions$name, 10)
##  [1] "Abbot, Joel"               "Abbot, Trevett"           
##  [3] "Abbott, Isaac"             "Abbott, J. Francis"       
##  [5] "Abbott, James W."          "Abbott, Thomas C."        
##  [7] "Abbott, Walter"            "Abbott, William A."       
##  [9] "Abercrombie, Alexander R." "Abercrombie, J.B."

The function unique() gives you, well, all the unique values in a vector. For instance:

unique(c(1, 1, 1, 2, 3))
## [1] 1 2 3
  1. What are all the different ranks contained in the naval_promotions dataset? (Hint: use unique().)
unique(naval_promotions$rank, 10)
## [1] midshipman        lieutenant        master_commandant captain          
## [5] left_service     
## 5 Levels: midshipman lieutenant master_commandant ... left_service
  1. How many different people are contained in the naval_promotions dataset?
unique(naval_promotions$id, 10)
##    [1]    1    2    3    4    5    6    7    8    9   10   11   12   13
##   [14]   14   15   16   17   18   19   20   21   22   23   24   25   26
##   [27]   27   28   29   30   31   32   33   34   35   36   37   38   39
##   [40]   40   41   42   43   44   45   46   47   48   49   50   51   52
##   [53]   53   54   55   56   57   58   59   60   61   62   63   64   65
##   [66]   66   67   68   69   70   71   72   73   74   75   77   78   79
##   [79]   80   81   82   83   84   85   86   87   88   89   90   91   92
##   [92]   93   94   95   96   97   98   99  100  101  102  103  104  105
##  [105]  106  107  108  109  110  111  112  113  114  115  116  118  119
##  [118]  120  121  122  123  124  125  126  128  129  130  131  132  133
##  [131]  134  135  136  137  138  139  140  142  143  144  145  146  147
##  [144]  148  149  150  151  152  153  154  155  156  157  158  159  160
##  [157]  162  163  164  165  166  167  169  171  172  174  175  176  177
##  [170]  178  179  181  182  183  184  185  186  187  188  189  190  191
##  [183]  192  193  194  195  196  197  198  199  200  202  203  204  205
##  [196]  206  207  208  209  210  211  212  213  214  215  216  217  218
##  [209]  219  220  221  222  223  224  225  226  227  228  229  230  231
##  [222]  232  233  234  235  236  237  238  239  240  241  242  243  244
##  [235]  245  246  247  248  249  250  251  252  253  254  255  256  257
##  [248]  258  260  261  262  263  264  265  266  267  268  269  270  271
##  [261]  272  273  274  275  276  277  278  279  280  281  282  283  284
##  [274]  285  286  287  288  289  290  291  293  294  295  296  297  298
##  [287]  299  300  301  302  303  304  305  306  307  308  309  310  311
##  [300]  312  313  314  315  316  317  318  319  320  321  322  323  324
##  [313]  325  326  327  328  329  330  331  332  333  334  335  336  337
##  [326]  338  339  340  341  342  343  344  345  346  347  348  349  350
##  [339]  351  352  353  354  355  356  357  358  359  360  361  362  363
##  [352]  364  365  366  367  368  369  370  371  372  373  374  375  376
##  [365]  377  378  379  380  381  382  383  384  385  386  388  389  390
##  [378]  391  392  393  394  395  396  397  398  399  400  401  402  403
##  [391]  404  405  406  407  408  409  410  411  412  413  414  415  416
##  [404]  417  418  419  420  421  422  423  424  425  426  427  428  429
##  [417]  430  431  432  433  435  436  437  438  439  440  441  442  443
##  [430]  444  445  446  447  448  449  450  451  452  454  455  456  457
##  [443]  458  459  460  461  462  463  464  465  466  467  468  469  470
##  [456]  471  473  475  476  477  478  479  480  481  482  483  484  485
##  [469]  486  487  488  489  490  491  492  493  494  495  496  497  498
##  [482]  499  500  501  502  503  504  505  506  507  508  509  510  511
##  [495]  512  513  514  515  516  517  518  519  520  521  522  523  524
##  [508]  526  527  528  529  530  531  532  533  534  535  536  537  538
##  [521]  539  540  541  543  544  546  547  548  549  550  551  552  553
##  [534]  554  555  556  557  558  559  560  561  562  563  564  565  566
##  [547]  567  568  569  570  571  572  573  574  575  576  577  578  579
##  [560]  580  581  582  583  585  586  587  588  589  590  592  593  594
##  [573]  595  596  597  598  599  600  601  602  603  604  605  606  607
##  [586]  608  609  610  611  612  613  614  615  617  619  620  621  622
##  [599]  623  624  625  626  627  628  629  630  631  632  633  634  635
##  [612]  636  637  638  639  640  641  642  643  644  645  646  647  648
##  [625]  649  650  651  652  653  654  655  656  657  658  659  660  661
##  [638]  662  663  664  665  667  668  669  670  671  672  673  674  675
##  [651]  676  677  678  679  680  681  682  683  684  685  686  687  688
##  [664]  689  690  691  692  693  694  695  696  697  698  699  700  701
##  [677]  702  704  705  706  707  708  709  710  711  712  713  714  715
##  [690]  716  717  718  719  720  721  722  723  724  725  726  727  728
##  [703]  729  730  731  732  733  734  735  736  737  738  739  740  741
##  [716]  742  744  745  746  748  749  750  751  752  753  754  755  756
##  [729]  757  758  759  760  761  762  763  765  766  767  768  769  770
##  [742]  771  772  773  774  775  776  777  778  780  781  782  783  784
##  [755]  785  786  787  788  789  790  791  792  793  794  795  796  797
##  [768]  798  800  801  802  803  804  805  806  807  808  809  810  811
##  [781]  812  813  814  815  816  817  818  820  821  822  823  824  825
##  [794]  826  827  828  829  830  831  832  833  834  835  836  837  838
##  [807]  839  840  841  842  843  844  845  846  847  848  849  850  851
##  [820]  852  853  854  855  856  857  858  859  860  861  862  863  864
##  [833]  865  866  867  868  869  870  871  872  873  874  875  876  877
##  [846]  878  879  880  881  882  883  884  885  886  887  888  889  890
##  [859]  891  892  893  894  895  896  897  898  899  900  901  902  903
##  [872]  904  905  906  907  908  909  910  911  912  913  914  915  916
##  [885]  917  918  919  920  921  922  923  924  925  926  927  928  929
##  [898]  930  931  932  933  934  936  937  938  939  940  941  942  943
##  [911]  944  945  946  947  948  949  950  951  952  953  954  955  956
##  [924]  957  958  959  960  961  962  963  964  965  967  968  969  970
##  [937]  971  972  973  974  975  976  977  978  979  980  981  982  983
##  [950]  984  985  986  987  988  989  990  992  993  994  995  996  997
##  [963]  998  999 1000 1001 1002 1003 1004 1006 1007 1008 1010 1011 1012
##  [976] 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
##  [989] 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
## [1002] 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
## [1015] 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1063 1064 1065
## [1028] 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
## [1041] 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1091 1092
## [1054] 1093 1094 1095 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
## [1067] 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
## [1080] 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
## [1093] 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
## [1106] 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
## [1119] 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
## [1132] 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
## [1145] 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
## [1158] 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
## [1171] 1211 1212 1213 1214 1215 1216 1217 1218 1220 1221 1222 1223 1224
## [1184] 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
## [1197] 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
## [1210] 1251 1252 1253 1254 1255 1256 1257 1258 1259 1261 1262 1263 1264
## [1223] 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
## [1236] 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
## [1249] 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
## [1262] 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
## [1275] 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
## [1288] 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
## [1301] 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
## [1314] 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
## [1327] 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
## [1340] 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
## [1353] 1395 1396 1397 1398 1399 1400 1401 1402 1404 1405 1407 1408 1409
## [1366] 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
## [1379] 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
## [1392] 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
## [1405] 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
## [1418] 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1475
## [1431] 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
## [1444] 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
## [1457] 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1515
## [1470] 1516 1517 1518 1519 1520 1521 1523 1524 1525 1526 1527 1528 1529
## [1483] 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
## [1496] 1543 1544 1545 1546 1547 1548 1550 1551 1552 1553 1554 1555 1556
## [1509] 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1570
## [1522] 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
## [1535] 1584 1585 1586 1587 1588 1589 1591 1592 1593 1594 1595 1596 1597
## [1548] 1598 1599 1600 1601 1602 1603 1605 1606 1607 1608 1609 1610 1611
## [1561] 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
## [1574] 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
## [1587] 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1650 1651
## [1600] 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
## [1613] 1665 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
## [1626] 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
## [1639] 1692 1693 1694 1695 1696 1697 1699 1700 1701 1702 1703 1704 1705
## [1652] 1706 1707 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
## [1665] 1720 1721 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
## [1678] 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
## [1691] 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
## [1704] 1761 1762 1763 1764 1765 1766 1767 1769 1770 1771 1772 1773 1774
## [1717] 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
## [1730] 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
## [1743] 1801 1802 1803 1804 1805 1806 1807 1808 1809 1811 1812 1813 1814
## [1756] 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
## [1769] 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
## [1782] 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1853 1854
## [1795] 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
## [1808] 1868 1869 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
## [1821] 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
## [1834] 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
## [1847] 1908 1909 1910 1911 1913 1914 1915 1916 1917 1918 1919 1920 1921
## [1860] 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
## [1873] 1935 1936 1937 1938 1939 1941 1942 1943 1944 1945 1947 1948 1949
## [1886] 1950 1951 1952 1953 1954 1956 1957 1958 1959 1960 1961 1962 1964
## [1899] 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
## [1912] 1978 1979 1980 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
## [1925] 1992 1993 1994 1995 1996 1997 1998 1999 2000 2002 2003 2004 2006
## [1938] 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
## [1951] 2020 2021 2022 2023 2025 2026 2027 2028 2029 2030 2031 2032 2033
## [1964] 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
## [1977] 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
## [1990] 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
## [2003] 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
## [2016] 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
## [2029] 2099 2100 2101 2102 2103 2104 2106 2107 2108 2109 2110 2111 2112
## [2042] 2113 2114 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
## [2055] 2128 2129 2130 2133 2134 2135 2136 2137 2138 2140 2141 2142 2143
## [2068] 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
## [2081] 2157 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
## [2094] 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
## [2107] 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
## [2120] 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
## [2133] 2211 2212 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
## [2146] 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
## [2159] 2238 2239 2240 2241 2243 2244 2245 2246 2247 2248 2249 2250 2251
## [2172] 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
## [2185] 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
## [2198] 2279 2280 2281 2282 2283 2285 2286 2287 2288 2289 2290 2291 2292
## [2211] 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
## [2224] 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
## [2237] 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
## [2250] 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
## [2263] 2346 2347 2348 2350 2351 2352 2353 2354 2355 2356 2358 2359 2360
## [2276] 2361 2362 2363 2364 2365 2367 2368 2369 2370 2371 2372 2373 2375
## [2289] 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
## [2302] 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
## [2315] 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
## [2328] 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
## [2341] 2430 2431 2432 2434 2435 2436 2437 2438 2439 2440 2442 2443 2444
## [2354] 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2456 2457 2458
## [2367] 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
## [2380] 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
## [2393] 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
## [2406] 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
## [2419] 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
## [2432] 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
## [2445] 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
## [2458] 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
## [2471] 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
## [2484] 2576 2577 2578 2579 2581 2582 2583 2584 2585 2586 2587 2588 2590
## [2497] 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
## [2510] 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2615 2616 2617
## [2523] 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
## [2536] 2631 2632 2633 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
## [2549] 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
## [2562] 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
## [2575] 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
## [2588] 2684 2685 2686 2687 2688 2689 2690 2691 2693 2695 2696 2697 2698
## [2601] 2699 2700 2701 2702 2703 2705 2706 2707 2708 2709 2710 2711 2712
## [2614] 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
## [2627] 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
## [2640] 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
## [2653] 2752 2753 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
## [2666] 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
## [2679] 2779 2780 2781 2782 2783 2784 2785 2786 2787 2789 2790 2791 2792
## [2692] 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
## [2705] 2806 2807 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
## [2718] 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
## [2731] 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
## [2744] 2846 2847 2849 2850 2851 2853 2854 2855 2856 2857 2858 2859 2860
## [2757] 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
## [2770] 2874 2875 2876 2877 2878 2879 2881 2882 2883 2884 2885 2886 2887
## [2783] 2888 2890 2891 2892 2893 2895 2896 2897 2898 2899 2900 2901 2902
## [2796] 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
## [2809] 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
## [2822] 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
## [2835] 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
## [2848] 2956 2957 2958 2959 2960 2961 2964 2965 2966 2967 2969 2970 2971
## [2861] 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
## [2874] 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
## [2887] 2998 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
## [2900] 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
## [2913] 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
## [2926] 3038 3039 3040 3041 3043 3044 3045 3046 3047 3048 3049 3050 3051
## [2939] 3052 3053 3054 3055 3056 3057 3058 3060 3062 3063 3064 3065 3066
## [2952] 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
## [2965] 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
## [2978] 3094 3095 3096 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
## [2991] 3108 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
## [3004] 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
## [3017] 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
## [3030] 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3162
## [3043] 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
## [3056] 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
## [3069] 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
## [3082] 3202 3203 3204 3205 3206 3208 3210 3211 3212 3213 3214 3215 3216
## [3095] 3217 3218 3219 3220 3221 3222 3223 3224 3226 3227 3228 3229 3230
## [3108] 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
## [3121] 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
## [3134] 3258 3259 3260 3261 3262 3263 3264 3266 3267 3268 3269 3270 3271
## [3147] 3272 3273 3274 3275 3276 3277 3278 3279 3281 3282 3283 3284 3285
## [3160] 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
## [3173] 3299 3300 3301 3302 3303 3304 3305 3306 3307 3309 3310 3311 3313
## [3186] 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3327
## [3199] 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3340 3341
## [3212] 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
## [3225] 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
## [3238] 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
## [3251] 3381 3382 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
## [3264] 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
## [3277] 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
## [3290] 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
## [3303] 3434 3435 3436 3437 3438 3439 3440   76  117  127  141  168  180
## [3316]  259  434  453  474  525  545  584  591  616  618  666  747  764
## [3329]  779  935  966  991 1005 1009 1062 1090 1219 1260 1403 1406 1474
## [3342] 1514 1522 1549 1569 1604 1649 1666 1698 1722 1760 1810 1852 1870
## [3355] 1912 1940 1946 1955 1963 1981 2005 2024 2115 2127 2131 2132 2158
## [3368] 2242 2252 2284 2293 2357 2366 2376 2377 2433 2441 2455 2589 2614
## [3381] 2634 2692 2704 2754 2788 2808 2852 2880 2889 2894 2929 2962 2968
## [3394] 2999 3042 3061 3109 3135 3161 3207 3209 3225 3257 3265 3280 3308
## [3407] 3312 3339 3383  472 1708 2184 2848  161  170  173  292  387  542
## [3420]  703  743  799  819 1096 1768 2001 2105 2139 2213 2349 2374 2580
## [3433] 2694 2963 3059 3093 3097 3326   10
  1. Why is that number different than the number of rows?

Because we only asked R for the first ten rows of data. By asking for the id using the unique function, we were able to se all of the people who were in the naval_promotions dataset. Which is 3433.

  1. What is the earliest and latest date in the dataset? (Hint: you may find some combination of sort(), head(), tail(), range(), and as.Date() to be useful. Don’t forget about na.rm = TRUE as appropriate.)
range(naval_promotions$date, na.rm = TRUE)
## [1] "1794-06-04" "unknown"

We will work much, much more with data frames.

Lists

Another very useful kind of data structure is the list. A list can hold values of any type, including vectors, data frames, and even other lists. For instance, we can create a list that holds several different kinds of information:

our_class <- list(
  title = "Intro to R",
  year = 2016,
  books = c("Basics of R", "Get Awesome at R"),
  students = c("Adam", "Betsy", "Cynthia", "David")
)
str(our_class)
## List of 4
##  $ title   : chr "Intro to R"
##  $ year    : num 2016
##  $ books   : chr [1:2] "Basics of R" "Get Awesome at R"
##  $ students: chr [1:4] "Adam" "Betsy" "Cynthia" "David"

We can get just part of the list using the [ function that we’ve become used to. For instance, to get just the title:

our_class["title"]
## $title
## [1] "Intro to R"

But notice that the returned value is a list, not a character vector

is.list(our_class["title"])
## [1] TRUE
is.character(our_class["title"])
## [1] FALSE

R has another subset operator, [[. The single bracket ([) gives us what we asked for inside a list; the double bracket ([[) simplifies the list to give us the vector (or whatever) we asked for.

our_class[["title"]]
## [1] "Intro to R"
is.list(our_class[["title"]])
## [1] FALSE
is.character(our_class[["title"]])
## [1] TRUE
  1. Using the our_class list, get just the year (as a list). Get it as a numeric vector.
our_class["year"]
## $year
## [1] 2016
is.list(our_class[["year"]])
## [1] FALSE
is.numeric(our_class[["year"]])
## [1] TRUE
  1. Using the our_class list, get the class title, the book list, and the year (as a list). (Hint: remember the different kinds of subsetting we did with [.)

R also lets us use the $ operator we used to get columns of a data frame.

our_class$title
## [1] "Intro to R"
  1. Get the students vector from our_class:
our_class$students
## [1] "Adam"    "Betsy"   "Cynthia" "David"
  1. Is the $ equivalent to [ or [[?

$ is equivalent to a single bracket []. This is because the single bracket lists out the data we are looking for, whereas the double brackets only answer TRUE or FALSE.

  1. Create a list that models a historic event. What parts of the event are worth keeping track of? Also extract certain parts of that list.
ameri_rev <- list(
  event = "American Revolution",
  year = 1765,
  books = c("Ideological Origins", "The British Americans"),
  figures = c("John", "Thomas", "George", "Abigail")
)
str(ameri_rev)
## List of 4
##  $ event  : chr "American Revolution"
##  $ year   : num 1765
##  $ books  : chr [1:2] "Ideological Origins" "The British Americans"
##  $ figures: chr [1:4] "John" "Thomas" "George" "Abigail"
ameri_rev$figures
## [1] "John"    "Thomas"  "George"  "Abigail"
  1. You can use $, [, and [[ on both data frames and lists. What is the relationship between a data frame and a list? (Hint: use is.list() and is.data.frame() on a list and a data frame.)

a list includes homogeneous data of a vector. A data frame inclues heterogeneous.

Subsetting with logical vectors

We have done subsetting above using numeric and character vectors. We can also do subsetting using logical vectors. Let’s create a sample dataset of the heights of soldiers.

set.seed(3929)
heights <- rnorm(20, mean = 69)
names(heights) <- letters[1:20]
heights
##        a        b        c        d        e        f        g        h 
## 67.82345 69.04801 69.59076 68.86947 68.54834 68.13089 68.82323 67.90888 
##        i        j        k        l        m        n        o        p 
## 71.88773 66.51703 68.58429 68.23702 70.36570 68.33046 69.48776 69.86949 
##        q        r        s        t 
## 69.78694 68.90278 68.82545 69.47962

We can find all the soldiers who are taller than average like this. First let’s compare all the heights to the mean height.

heights > mean(heights)
##     a     b     c     d     e     f     g     h     i     j     k     l 
## FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE 
##     m     n     o     p     q     r     s     t 
##  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE

Notice that we get a logical vector as a result. We can use that within the [ operator to get just the soldiers who are taller than average.

heights[heights > mean(heights)]
##        b        c        i        m        o        p        q        t 
## 69.04801 69.59076 71.88773 70.36570 69.48776 69.86949 69.78694 69.47962
  1. Which soldiers are taller than 70 inches?
heights[heights > 70]
##        i        m 
## 71.88773 70.36570

This kind of subsetting also works for data frames. Here we get all the officers from the first generation. (Notice the comma.)

first_gen <- naval_promotions[naval_promotions$generation == 1, ]
head(first_gen, 10)
## Source: local data frame [10 x 5]
## 
##       id                name generation       rank       date
##    (int)               (chr)      (int)     (fctr)      (chr)
## 1     76        Archer, John          1 lieutenant 1798-11-08
## 2    117 Bainbridge, William          1 lieutenant 1798-08-03
## 3    127       Baker, Thomas          1 lieutenant 1798-05-25
## 4    141       Ballard, John          1 lieutenant 1798-10-02
## 5    168       Barron, James          1 lieutenant 1798-03-09
## 6    180    Barton, Jeremiah          1 lieutenant 1798-06-08
## 7    259       Blair, George          1 lieutenant 1799-03-13
## 8    434        Burns, James          1 lieutenant 1798-10-29
## 9    453       Byrne, Gerald          1 lieutenant 1799-06-17
## 10   474     Campbell, James          1 lieutenant 1799-09-20
  1. Can you get just the promotions to captain?
head(naval_promotions, "captain")
## Source: local data frame [5,705 x 5]
## 
##       id                      name generation       rank       date
##    (int)                     (chr)      (int)     (fctr)      (chr)
## 1      1               Abbot, Joel          3 midshipman 1812-06-18
## 2      2            Abbot, Trevett          4 midshipman 1848-10-13
## 3      3             Abbott, Isaac          4 midshipman 1820-05-10
## 4      4        Abbott, J. Francis          4 midshipman 1837-12-27
## 5      5          Abbott, James W.          4 midshipman 1822-05-01
## 6      6         Abbott, Thomas C.          3 midshipman 1814-12-06
## 7      7            Abbott, Walter          3 midshipman 1812-01-01
## 8      8        Abbott, William A.          4 midshipman 1848-10-13
## 9      9 Abercrombie, Alexander R.          4 midshipman 1841-10-19
## 10    10         Abercrombie, J.B.          4 midshipman 1817-01-01
## ..   ...                       ...        ...        ...        ...
  1. Can you get the promotions from 1800? (Hint: you will first have to make the date column a date object.)
naval_promotions$date <- as.Date(naval_promotions$date)
naval_promotions[naval_promotions$date >=  as.Date("1800-01-01") & naval_promotions$date < as.Date("1800-12-31"), ]
## Source: local data frame [189 x 5]
## 
##       id                name generation       rank       date
##    (int)               (chr)      (int)     (fctr)     (date)
## 1     31     Aldrick, Samuel          2 midshipman 1800-07-07
## 2     45      Allen, Samuel           2 midshipman 1800-12-13
## 3     47   Allen, William H.          2 midshipman 1800-04-28
## 4     66 Anderson, Thomas O.          2 midshipman 1800-04-14
## 5     72     Angier, Charles          2 midshipman 1800-09-03
## 6    154  Barker, William W.          2 midshipman 1800-03-26
## 7    195    Beale, Thomas T.          2 midshipman 1800-02-17
## 8    203        Beck, Daniel          2 midshipman 1800-11-24
## 9    227     Bennett, Edward          2 midshipman 1800-01-03
## 10   233   Bentley, Peter E.          2 midshipman 1800-04-12
## ..   ...                 ...        ...        ...        ...