Source file
d
given below. I have provided examples to help you.Questions to ask yourself to get started:
Is the data table glyph ready? If not, do I need to need to convert table formats (i.e. narrow to wide) or join another table?
What are the glyphs?
What are the aesthetics?
What are the scales (i.e. mappings)
Are there fixed attributes (i.e. col = “red”)?
Are there labels and themes?
set.seed(123)
d <- diamonds[sample(nrow(diamonds), 1000), ]
head(d)
carat | cut | color | clarity | depth | table | price | x | y | z |
---|---|---|---|---|---|---|---|---|---|
1.03 | Premium | G | VS2 | 62.3 | 59 | 6214 | 6.38 | 6.42 | 3.99 |
0.50 | Fair | D | SI1 | 65.7 | 56 | 1323 | 5.01 | 4.97 | 3.28 |
1.74 | Very Good | H | SI2 | 62.1 | 59 | 10086 | 7.65 | 7.78 | 4.79 |
0.51 | Ideal | D | VS2 | 61.2 | 55 | 1882 | 5.18 | 5.16 | 3.16 |
0.70 | Ideal | H | SI1 | 62.5 | 56 | 2294 | 5.64 | 5.69 | 3.54 |
0.71 | Ideal | H | IF | 62.0 | 54 | 3190 | 5.71 | 5.75 | 3.55 |
set.seed(955)
# Make some noisily increasing data
dat <- data.frame(cond = rep(c("A", "B"), each=10),
xvar = 1:20 + rnorm(20,sd=3),
yvar = 1:20 + rnorm(20,sd=3))
ggplot(dat, aes(x=xvar, y=yvar)) +
geom_point(shape=1) + # Use hollow circles
geom_smooth() # Add a loess smoothed fit curve with confidence region
# > geom_smooth: method="auto" and size of largest group is less than 1000, so using loess.
# Use 'method = x' to change the smoothing method.
set.seed(955)
# Make some noisily increasing data
dat <- data.frame(cond = rep(c("A", "B"), each=10),
xvar = 1:20 + rnorm(20,sd=3),
yvar = 1:20 + rnorm(20,sd=3))
ggplot(dat, aes(x=xvar, y=yvar)) +
geom_point(shape=1) + # Use hollow circles
geom_smooth(method=lm, fill="red") # Add linear regression line
library(reshape2)
sp <- ggplot(tips, aes(x=total_bill, y=tip/total_bill)) + geom_point(shape=1)
# Divide by levels of "sex", in the horizontal direction
sp + facet_grid(. ~ sex)
hp <- ggplot(tips, aes(x=total_bill)) + geom_histogram(binwidth=2,colour="white")
# Histogram of total_bill, divided by sex and smoker
hp + facet_grid(sex ~ smoker)
ggplot(mpg, aes(displ, hwy))+
geom_point()+
facet_wrap(~manufacturer)
set.seed(123)
ds <- data.frame(x = rnorm(10),
y = rnorm(10),
group = LETTERS[1:2])
ggplot(ds, aes(x, y)) +
geom_point(aes(color = group), size = 7) +
geom_text(aes(label = group), size = 4)
set.seed(123)
df <- diamonds[sample(1:nrow(diamonds), size = 1000),]
ggplot(df, aes(carat, price)) +
geom_point() +
labs(title = "Diamonds", x = "x-axis -> Carat", y = "y-axis -> Price") +
theme(plot.title = element_text(size = 50, colour = "#668cff"),
axis.title.x = element_text(size = 20, colour = "#6699ff"),
axis.title.y = element_text(size = 20, colour = "#ff8080"))
set.seed(123)
df <- diamonds[sample(1:nrow(diamonds), size = 1000),]
ggplot(df, aes(carat, price)) +
geom_point() +
theme(axis.ticks = element_line(size = 10))
ggplot(df, aes(carat, price, color = color, alpha = cut)) +
geom_point() +
theme(axis.text.x = element_text(colour = "#ff6666", size = 20),
axis.text.y = element_text(colour = "#668cff", size = 20))
ggplot(df, aes(carat, price, color = cut)) +
geom_point() +
theme(axis.text = element_blank())