## Loading required package: data.table
## Loading required package: ggplot2

Number of executed orders by account and ReqPerSec

table(d$Account, d$OPS_Req, d$TestNumber)
## , ,  = 1
## 
##         
##            1
##   100011 300
      print("Top longest execution")    
## [1] "Top longest execution"
      print(d[order(-Total)][1:10,])
##     TestNumber Account OPS_Req OPS_Mean OPS_Sd   Order New Calculated1
##  1:          1  100011       1        1      0 5142304  26          10
##  2:          1  100011       1        1      0 5142530  11          21
##  3:          1  100011       1        1      0 5142388  17          15
##  4:          1  100011       1        1      0 5142509  15          15
##  5:          1  100011       1        1      0 5142385  12          17
##  6:          1  100011       1        1      0 5142480  12          19
##  7:          1  100011       1        1      0 5142527   8           8
##  8:          1  100011       1        1      0 5142372   5          22
##  9:          1  100011       1        1      0 5142511  10          19
## 10:          1  100011       1        1      0 5142548   7          13
##     Filled Calculated2 Total
##  1:      0           2    38
##  2:      0           3    35
##  3:      0           2    34
##  4:      0           4    34
##  5:      0           4    33
##  6:      0           2    33
##  7:      0          16    32
##  8:      4           0    31
##  9:      0           2    31
## 10:      0          11    31
      print("Worst New execution")    
## [1] "Worst New execution"
      print(d[order(-New)][1:10,])
##     TestNumber Account OPS_Req OPS_Mean OPS_Sd   Order New Calculated1
##  1:          1  100011       1        1      0 5142304  26          10
##  2:          1  100011       1        1      0 5142557  19           0
##  3:          1  100011       1        1      0 5142388  17          15
##  4:          1  100011       1        1      0 5142451  17           6
##  5:          1  100011       1        1      0 5142433  15           8
##  6:          1  100011       1        1      0 5142509  15          15
##  7:          1  100011       1        1      0 5142559  15           5
##  8:          1  100011       1        1      0 5142326  14           0
##  9:          1  100011       1        1      0 5142550  14           6
## 10:          1  100011       1        1      0 5142399  13           7
##     Filled Calculated2 Total
##  1:      0           2    38
##  2:      0           3    22
##  3:      0           2    34
##  4:      0           7    30
##  5:      0           3    26
##  6:      0           4    34
##  7:      0           2    22
##  8:      3           0    17
##  9:      3           5    28
## 10:      0           2    22
      print("Worst Calculated1 execution")    
## [1] "Worst Calculated1 execution"
      print(d[order(-Calculated1)][1:10,])
##     TestNumber Account OPS_Req OPS_Mean OPS_Sd   Order New Calculated1
##  1:          1  100011       1        1      0 5142372   5          22
##  2:          1  100011       1        1      0 5142418   5          21
##  3:          1  100011       1        1      0 5142530  11          21
##  4:          1  100011       1        1      0 5142394   5          20
##  5:          1  100011       1        1      0 5142340  11          19
##  6:          1  100011       1        1      0 5142480  12          19
##  7:          1  100011       1        1      0 5142511  10          19
##  8:          1  100011       1        1      0 5142516  11          19
##  9:          1  100011       1        1      0 5142402   6          18
## 10:          1  100011       1        1      0 5142446   9          18
##     Filled Calculated2 Total
##  1:      4           0    31
##  2:      0           0    26
##  3:      0           3    35
##  4:      0           2    27
##  5:      0           0    30
##  6:      0           2    33
##  7:      0           2    31
##  8:      0           0    30
##  9:      0           0    24
## 10:      0           2    29
      print("Worst Filled execution")    
## [1] "Worst Filled execution"
      print(d[order(-Filled)][1:10,])
##     TestNumber Account OPS_Req OPS_Mean OPS_Sd   Order New Calculated1
##  1:          1  100011       1        1      0 5142305   6           5
##  2:          1  100011       1        1      0 5142314   5           6
##  3:          1  100011       1        1      0 5142372   5          22
##  4:          1  100011       1        1      0 5142562   7          11
##  5:          1  100011       1        1      0 5142596   5           7
##  6:          1  100011       1        1      0 5142326  14           0
##  7:          1  100011       1        1      0 5142550  14           6
##  8:          1  100011       1        1      0 5142349   4           8
##  9:          1  100011       1        1      0 5142386   6           6
## 10:          1  100011       1        1      0 5142500  13           0
##     Filled Calculated2 Total
##  1:      7           3    21
##  2:      4           0    15
##  3:      4           0    31
##  4:      4           0    22
##  5:      4           2    18
##  6:      3           0    17
##  7:      3           5    28
##  8:      2           2    16
##  9:      2           2    16
## 10:      2           0    15
      print("Proprtion delay for each execution staqge")
## [1] "Proprtion delay for each execution staqge"
      print ( apply( apply(d[,7:10, with=F], 1, prop.table), 1, mean) )
##         New Calculated1      Filled Calculated2 
##  0.36777330  0.47357521  0.00982148  0.14883001

Summary execution time ~ requested orders per second

d[,OPS_Req:=OPS_Req * TestNumber]
d[,OPS_Mean:=OPS_Mean * TestNumber]

si<-rbind( tapply(d$Total, d$OPS_Req, length), 
           tapply(d$Total, d$OPS_Req, min),
           tapply(d$Total, d$OPS_Req, mean), 
           tapply(d$Total, d$OPS_Req, median), 
           tapply(d$Total, d$OPS_Req, max), 
           tapply(d$Total, d$OPS_Req, sd))
rownames(si)<-c("length", "min", "mean", "median", "max", "sd")
si<-round(t(si))
ggplot(melt(si), aes(Var1, value)) + geom_point() + facet_grid(Var2 ~ ., scales = "free") + xlab("Requested Orders Per Second")

Scaling

ggplot( d, aes(x=OPS_Req, y=OPS_Mean)) + geom_line() + geom_abline(intercept = 0, slope = 1,  size=2, color='red')