First, let’s preprocess the data by converting feet+inches to inches: Height = Height_Feet * 12 + Height_Inches. Then we have all the information needed for male and female heights:
## height Gender Freq
## 1 52 Female 3
## 2 53 Female 5
## 3 54 Female 12
## 4 55 Female 24
## 5 56 Female 44
## 6 57 Female 101
## 7 58 Female 163
## 8 59 Female 260
## 9 60 Female 404
## 10 61 Female 549
## 11 62 Female 693
## 12 63 Female 869
## 13 64 Female 1076
## 14 65 Female 1013
## 15 66 Female 951
## 16 67 Female 823
## 17 68 Female 695
## 18 69 Female 494
## 19 70 Female 299
## 20 71 Female 217
## 21 72 Female 110
## 22 73 Female 58
## 23 74 Female 20
## 24 75 Female 12
## 25 76 Female 5
## 26 77 Female 0
## 27 78 Female 0
## 28 79 Female 0
## 29 80 Female 0
## 30 81 Female 0
## 31 82 Female 0
## 32 83 Female 0
## 33 52 Male 0
## 34 53 Male 0
## 35 54 Male 0
## 36 55 Male 0
## 37 56 Male 0
## 38 57 Male 0
## 39 58 Male 0
## 40 59 Male 0
## 41 60 Male 1
## 42 61 Male 10
## 43 62 Male 14
## 44 63 Male 53
## 45 64 Male 117
## 46 65 Male 241
## 47 66 Male 369
## 48 67 Male 500
## 49 68 Male 700
## 50 69 Male 787
## 51 70 Male 849
## 52 71 Male 882
## 53 72 Male 873
## 54 73 Male 779
## 55 74 Male 610
## 56 75 Male 432
## 57 76 Male 274
## 58 77 Male 155
## 59 78 Male 83
## 60 79 Male 38
## 61 80 Male 24
## 62 81 Male 5
## 63 82 Male 3
## 64 83 Male 1
using builtin function “ggplot” in R:
To construct from scratch:
## height male_female male_pos
## 1 55 Female 0.000000000
## 2 60 Female 0.002469136
## 3 65 Female 0.192185008
## 4 70 Male 0.739547038
## 5 75 Male 0.972972973
## 6 80 Male 1.000000000
## [1] "Female-- Mean: 64.7257303370787, Standard Deviation: 3.47843448028316"
## [1] "Male---- Mean: 70.7680769230769, Standard Deviation: 3.30966736751305"
## height male_female male_pos
## 1 55 Female 0.0005405442
## 2 60 Female 0.0115206399
## 3 65 Female 0.1682957181
## 4 70 Male 0.7389322760
## 5 75 Male 0.9696021681
## 6 80 Male 0.9965588763
## height Gender Freq
## 1 55 Female 1
## 2 56 Female 1
## 3 57 Female 6
## 4 58 Female 2
## 5 59 Female 4
## 6 60 Female 2
## 7 61 Female 6
## 8 62 Female 9
## 9 63 Female 10
## 10 64 Female 11
## 11 65 Female 13
## 12 66 Female 14
## 13 67 Female 10
## 14 68 Female 7
## 15 69 Female 9
## 16 70 Female 2
## 17 71 Female 4
## 18 72 Female 0
## 19 73 Female 1
## 20 74 Female 0
## 21 75 Female 0
## 22 76 Female 0
## 23 77 Female 0
## 24 78 Female 0
## 25 80 Female 0
## 26 55 Male 0
## 27 56 Male 0
## 28 57 Male 0
## 29 58 Male 0
## 30 59 Male 0
## 31 60 Male 0
## 32 61 Male 0
## 33 62 Male 0
## 34 63 Male 0
## 35 64 Male 1
## 36 65 Male 2
## 37 66 Male 6
## 38 67 Male 7
## 39 68 Male 6
## 40 69 Male 7
## 41 70 Male 13
## 42 71 Male 13
## 43 72 Male 7
## 44 73 Male 3
## 45 74 Male 9
## 46 75 Male 5
## 47 76 Male 4
## 48 77 Male 2
## 49 78 Male 1
## 50 80 Male 2
## height male_female male_pos
## 1 55 Female 0.0000000
## 2 60 Female 0.0000000
## 3 65 Female 0.1333333
## 4 70 Male 0.8666667
## 5 75 Male 1.0000000
## 6 80 Male 1.0000000
## [1] "Female-- Mean: 64.4285714285714, Standard Deviation: 3.75778899367409"
## [1] "Male---- Mean: 70.9431818181818, Standard Deviation: 3.45864884436555"
## height male_female male_pos
## 1 55 Female 0.0005387538
## 2 60 Female 0.0126171389
## 3 65 Female 0.1803789018
## 4 70 Male 0.7335960589
## 5 75 Male 0.9615866723
## 6 80 Male 0.9939877375