## Loading required package: data.table
## Loading required package: ggplot2

Number of executed orders by account and ReqPerSec

table(d$Account, d$OPS_Req, d$TestNumber)
## , ,  = 1
## 
##         
##            1
##   100000 300
      print("Top longest execution")    
## [1] "Top longest execution"
      print(d[order(-Total)][1:10,])
##     TestNumber Account OPS_Req OPS_Mean OPS_Sd  Order New Calculated1
##  1:          1  100000       1        1      0 253503  12          12
##  2:          1  100000       1        1      0 253505  19          16
##  3:          1  100000       1        1      0 253618   8          27
##  4:          1  100000       1        1      0 253389  14          11
##  5:          1  100000       1        1      0 253431  11          15
##  6:          1  100000       1        1      0 253487  12          15
##  7:          1  100000       1        1      0 253372  13          11
##  8:          1  100000       1        1      0 253434  13          11
##  9:          1  100000       1        1      0 253489  13          10
## 10:          1  100000       1        1      0 253619  18          10
##     Filled Calculated2 Total
##  1:      1          33    58
##  2:     10           1    46
##  3:      3           3    41
##  4:      4           7    36
##  5:      7           2    35
##  6:      3           5    35
##  7:      7           2    33
##  8:      4           4    32
##  9:      4           5    32
## 10:      3           1    32
      print("Worst New execution")    
## [1] "Worst New execution"
      print(d[order(-New)][1:10,])
##     TestNumber Account OPS_Req OPS_Mean OPS_Sd  Order New Calculated1
##  1:          1  100000       1        1      0 253505  19          16
##  2:          1  100000       1        1      0 253510  19           4
##  3:          1  100000       1        1      0 253619  18          10
##  4:          1  100000       1        1      0 253426  16           6
##  5:          1  100000       1        1      0 253363  15           4
##  6:          1  100000       1        1      0 253629  15           9
##  7:          1  100000       1        1      0 253367  14           8
##  8:          1  100000       1        1      0 253375  14           7
##  9:          1  100000       1        1      0 253389  14          11
## 10:          1  100000       1        1      0 253404  14          10
##     Filled Calculated2 Total
##  1:     10           1    46
##  2:      5           1    29
##  3:      3           1    32
##  4:      5           1    28
##  5:      1           5    25
##  6:      6           2    32
##  7:      6           2    30
##  8:      6           1    28
##  9:      4           7    36
## 10:      1           5    30
      print("Worst Calculated1 execution")    
## [1] "Worst Calculated1 execution"
      print(d[order(-Calculated1)][1:10,])
##     TestNumber Account OPS_Req OPS_Mean OPS_Sd  Order New Calculated1
##  1:          1  100000       1        1      0 253618   8          27
##  2:          1  100000       1        1      0 253505  19          16
##  3:          1  100000       1        1      0 253431  11          15
##  4:          1  100000       1        1      0 253487  12          15
##  5:          1  100000       1        1      0 253382   7          13
##  6:          1  100000       1        1      0 253474  11          13
##  7:          1  100000       1        1      0 253657   8          13
##  8:          1  100000       1        1      0 253376   9          12
##  9:          1  100000       1        1      0 253419   9          12
## 10:          1  100000       1        1      0 253437  11          12
##     Filled Calculated2 Total
##  1:      3           3    41
##  2:     10           1    46
##  3:      7           2    35
##  4:      3           5    35
##  5:      5           1    26
##  6:      4           1    29
##  7:      4           2    27
##  8:      9           1    31
##  9:      0           4    25
## 10:      2           3    28
      print("Worst Filled execution")    
## [1] "Worst Filled execution"
      print(d[order(-Filled)][1:10,])
##     TestNumber Account OPS_Req OPS_Mean OPS_Sd  Order New Calculated1
##  1:          1  100000       1        1      0 253383   7           7
##  2:          1  100000       1        1      0 253505  19          16
##  3:          1  100000       1        1      0 253376   9          12
##  4:          1  100000       1        1      0 253414   7          10
##  5:          1  100000       1        1      0 253415   8           7
##  6:          1  100000       1        1      0 253416   9           8
##  7:          1  100000       1        1      0 253519   6          12
##  8:          1  100000       1        1      0 253639  10           9
##  9:          1  100000       1        1      0 253372  13          11
## 10:          1  100000       1        1      0 253381   8           6
##     Filled Calculated2 Total
##  1:     11           1    26
##  2:     10           1    46
##  3:      9           1    31
##  4:      9           5    31
##  5:      9           1    25
##  6:      9           3    29
##  7:      8           1    27
##  8:      8           2    29
##  9:      7           2    33
## 10:      7           1    22
      print("Proprtion delay for each execution staqge")
## [1] "Proprtion delay for each execution staqge"
      print ( apply( apply(d[,7:10, with=F], 1, prop.table), 1, mean) )
##         New Calculated1      Filled Calculated2 
##   0.3797141   0.3390979   0.1507908   0.1303972

Summary execution time ~ requested orders per second

d[,OPS_Req:=OPS_Req * TestNumber]
d[,OPS_Mean:=OPS_Mean * TestNumber]

si<-rbind( tapply(d$Total, d$OPS_Req, length), 
           tapply(d$Total, d$OPS_Req, min),
           tapply(d$Total, d$OPS_Req, mean), 
           tapply(d$Total, d$OPS_Req, median), 
           tapply(d$Total, d$OPS_Req, max), 
           tapply(d$Total, d$OPS_Req, sd))
rownames(si)<-c("length", "min", "mean", "median", "max", "sd")
si<-round(t(si))
ggplot(melt(si), aes(Var1, value)) + geom_point() + facet_grid(Var2 ~ ., scales = "free") + xlab("Requested Orders Per Second")

Scaling

ggplot( d, aes(x=OPS_Req, y=OPS_Mean)) + geom_line() + geom_abline(intercept = 0, slope = 1,  size=2, color='red')