library(data.table)
library(dplyr)
library(ggplot2)
library(ggthemes)
library(scales)
library(viridis)
library(ggalt)
Get the data:
URL <- "https://juliogarcia.github.io/fanduel_upload.csv"
fil <- basename(URL)
if (!file.exists(fil)) download.file(URL, fil)
dat <- tbl_df(fread(fil))
Get the local density of each point in the scatterplot pairs. Use Viridis as the color palette. Add this new color value as a column in the data frame.
dat$dens_col <- densCols(dat$CombinedSalary, dat$FPPG, colramp=viridis_pal())
Make the scatterplot:
gg <- ggplot()
gg <- gg + geom_point(data=dat,
aes(x=CombinedSalary, y=FPPG, color=dens_col),
size=0.6, alpha=1/4)
gg <- gg + scale_color_identity()
gg <- gg + theme_tufte(base_family="Helvetica")
gg <- gg + labs(x='Salary', y='Lineup Total Fantasy Points Per Game',
title=sprintf("%s Ramdomly Created FanDuel Lineups", comma(nrow(dat))))
gg
Alternate way of showing the densities:
gg <- ggplot()
gg <- gg + stat_bkde2d(data=dat,
aes(x=CombinedSalary, y=FPPG, fill=..level..),
geom="polygon")
gg <- gg + scale_fill_viridis()
gg <- gg + theme_tufte(base_family="Helvetica")
gg <- gg + labs(x='Salary', y='Lineup Total Fantasy Points Per Game',
title=sprintf("%s Ramdomly Created FanDuel Lineups", comma(nrow(dat))))
gg
Rmd source available in this gist