Synopsis

This document contains 3 elements:

Data procesing

In order to determine the most impactful type of cathastropic event when it comes to both human health as well as economic situation I had to design new measures. I could not use a simple sum of measure like fatalities because some events occured more frequently and therefore those would have higher value of sum. In sted of that I calculated measure per event so i divided the sum of for ex. fatalities for a particular event by the nr of times this event happend. This way I got a measure that allowed for a comparison of different events.

setwd("C:/Users/T540pDLEWYNBQ/Google Drive/Inne/Coursera/Reproducible Research/Assignment 2")
stormdata<-read.csv("FStormData.bz2")
library(dplyr)
FATALITIES_BY_EVTYPE<-stormdata %>% 
    group_by(EVTYPE) %>% 
    summarise("count"=n(),
              "FATALITIES_SUM"=sum(FATALITIES, na.rm=T)) %>% 
    mutate("FATALITIES_PER_EVENT"=FATALITIES_SUM/count) %>% 
    arrange(FATALITIES_PER_EVENT) %>% 
    top_n(10,FATALITIES_PER_EVENT)
INJURIES_BY_EVTYPE<-stormdata %>% 
    group_by(EVTYPE) %>% 
    summarise("count"=n(),
              "INJURIES_SUM"=sum(INJURIES, na.rm=T)) %>% 
    mutate("INJURIES_PER_EVENT"=INJURIES_SUM/count) %>% 
    arrange(INJURIES_PER_EVENT) %>% 
    top_n(10,INJURIES_PER_EVENT)
names<-FATALITIES_BY_EVTYPE$EVTYPE
FATALITIES_BY_EVTYPE$EVTYPE<-factor(FATALITIES_BY_EVTYPE$EVTYPE, levels = names)
names<-INJURIES_BY_EVTYPE$EVTYPE
INJURIES_BY_EVTYPE$EVTYPE<-factor(INJURIES_BY_EVTYPE$EVTYPE, levels = names)
PROPDMG_BY_EVTYPE<-stormdata %>% 
    group_by(EVTYPE) %>% 
    summarise("count"=n(),
              "PROPDMG_SUM"=sum(PROPDMG, na.rm=T)) %>% 
    mutate("PROPDMG_PER_EVENT"=PROPDMG_SUM/count) %>% 
    arrange(PROPDMG_PER_EVENT) %>% 
    top_n(10,PROPDMG_PER_EVENT)
CROPDMG_BY_EVTYPE<-stormdata %>% 
    group_by(EVTYPE) %>% 
    summarise("count"=n(),
              "CROPDMG_SUM"=sum(CROPDMG, na.rm=T)) %>% 
    mutate("CROPDMG_PER_EVENT"=CROPDMG_SUM/count) %>% 
    arrange(CROPDMG_PER_EVENT) %>% 
    top_n(10,CROPDMG_PER_EVENT)
names<-PROPDMG_BY_EVTYPE$EVTYPE
PROPDMG_BY_EVTYPE$EVTYPE<-factor(PROPDMG_BY_EVTYPE$EVTYPE, levels = names)
names<-CROPDMG_BY_EVTYPE$EVTYPE
CROPDMG_BY_EVTYPE$EVTYPE<-factor(CROPDMG_BY_EVTYPE$EVTYPE, levels = names)

Results - Question 1

Below you can find the list of top 10 most impactful catastrophic events when it comes to human fatalities and injuries.

library(ggplot2)
a<-ggplot(data=FATALITIES_BY_EVTYPE)+
    geom_bar(aes(x=EVTYPE, y = FATALITIES_PER_EVENT), stat = "identity")+
    coord_flip()+
    ggtitle("FATALITIES PER EVENT")
b<-ggplot(data=INJURIES_BY_EVTYPE)+
    geom_bar(aes(x=EVTYPE, y = INJURIES_PER_EVENT), stat = "identity")+
    coord_flip()+
    ggtitle("INJURIES PER EVENT")
multiplot(a,b, cols=2)

Results - Question 2

Below you can find the list of top 10 most impactful catastrophic events when it comes to propery damage and crop damage.

library(ggplot2)
a<-ggplot(data=PROPDMG_BY_EVTYPE)+
    geom_bar(aes(x=EVTYPE, y = PROPDMG_PER_EVENT), stat = "identity")+
    coord_flip()+
    ggtitle("PROPERTY DAMAGE PER EVENT")
b<-ggplot(data=CROPDMG_BY_EVTYPE)+
    geom_bar(aes(x=EVTYPE, y = CROPDMG_PER_EVENT), stat = "identity")+
    coord_flip()+
    ggtitle("CROP DAMAGE PER EVENT")
multiplot(a,b, cols=2)