Data analysis of basic parenting values/attitudes survey.

1 Data preprocessing

Preliminaries.

## [1] "dplyr"   "langcog" "tidyr"   "ggplot2" "lme4"
## 
## Attaching package: 'langcog'
## The following object is masked from 'package:base':
## 
##     scale
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
## Warning: package 'ggplot2' was built under R version 3.2.3
## 
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
## 
##     %+%, alpha
## Loading required package: MASS
## 
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
## 
##     select
## Loading required package: boot
## 
## Attaching package: 'boot'
## The following object is masked from 'package:psych':
## 
##     logit
## Loading required package: lattice
## 
## Attaching package: 'lattice'
## The following object is masked from 'package:boot':
## 
##     melanoma
## 
## Attaching package: 'nFactors'
## The following object is masked from 'package:lattice':
## 
##     parallel
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## The following object is masked from 'package:tidyr':
## 
##     expand

Read in files and consolidate to the same directory.

files <- dir("../production-results/uptake_e2/")
d.raw <- data.frame()

for (f in files) {
  jf <- paste("../production-results/uptake_e2/",f,sep="")
  jd <- fromJSON(paste(readLines(jf), collapse=""))
  
  # clean up different tasks
  trial_type <- jd$answer$data$trial_type
  
  #parenting questionnaire 
  sent <- jd$answers$data$sentence[trial_type != "uptake"]
  rating <- as.numeric(jd$answers$data$rating[trial_type != "uptake"]) 
  
  #uptake experiment
  control_recall_1 = as.character(jd$answers$data$answer[1])
  control_recall_2 = as.character(jd$answers$data$answer[2])
  control_recall_3 = as.character(jd$answers$data$answer[3])
  control_recall_4 = as.character(jd$answers$data$answer[4])
  control_recall_5 = as.character(jd$answers$data$answer[5])
  target_generalize_1 = as.character(jd$answers$data$answer[6])
  target_generalize_2 = as.character(jd$answers$data$answer[7])
  target_generalize_3 = as.character(jd$answers$data$answer[8])
  target_generalize_4 = as.character(jd$answers$data$answer[9])
  target_generalize_5 = as.character(jd$answers$data$answer[10])
  target_recall_1 = as.character(jd$answers$data$answer[11])
  target_recall_2 = as.character(jd$answers$data$answer[12])
  target_recall_3 = as.character(jd$answers$data$answer[13])
  target_recall_4 = as.character(jd$answers$data$answer[14])
  target_recall_5 = as.character(jd$answers$data$answer[15])
  reading_time_target = jd$answers$data$target_rt[1]
  reading_time_control = jd$answers$data$control_rt[1]
  time_questionnaire = jd$answers$data$questionnaire_rt[1]
  
  
  #demographics
  race <- as.character(jd$answers$data$race[1])
  
  id <- data.frame(workerid = jd$WorkerId, 
                   sent = sent,
                   rating = rating,
                   enjoy_target = jd$answers$data$enjoy_target,
                   enjoy_control = jd$answers$data$enjoy_control,
                   reading_ease_target = jd$answers$data$reading_ease_target,
                   reading_ease_control = jd$answers$data$reading_ease_control,
                   target_recall_1 = target_recall_1,
                   target_recall_2 = target_recall_2,
                   target_recall_3 = target_recall_3,
                   target_recall_4 = target_recall_4,
                   target_recall_5 = target_recall_5,
                   target_generalize_1 = target_generalize_1,
                   target_generalize_2 = target_generalize_2,
                   target_generalize_3 = target_generalize_3,
                   target_generalize_4 = target_generalize_4,
                   target_generalize_5 = target_generalize_5,
                   control_recall_1 = control_recall_1,
                   control_recall_2 = control_recall_2,
                   control_recall_3 = control_recall_3,
                   control_recall_4 = control_recall_4,
                   control_recall_5 = control_recall_5,
                   children = jd$answers$data$children,
                   language = jd$answers$data$homelang,
                   ses = jd$answers$data$ladder,
                   gender = jd$answers$data$gender,
                   age = jd$answers$data$age,
                   education = jd$answers$data$education,
                   ethnicity = jd$answers$data$ethnicity,
                   childAgeYoung = jd$answers$data$childAgeYoung,
                   childAgeOld = jd$answers$data$childAgeOld,
                   race = race,
                   reading_time_target = reading_time_target,
                   reading_time_control = reading_time_control,
                   time_questionnaire = time_questionnaire,
                   group = "reading"
                   )
  d.raw <- bind_rows(d.raw, id)
}
files <- dir("../production-results/uptake_control_e1/")

for (f in files) {
  jf <- paste("../production-results/uptake_control_e1/",f,sep="")
  jd <- fromJSON(paste(readLines(jf), collapse=""))
  
  # clean up different tasks
  trial_type <- jd$answer$data$trial_type
  
  #parenting questionnaire 
  sent <- jd$answers$data$sentence[trial_type != "uptake"]
  rating <- as.numeric(jd$answers$data$rating[trial_type != "uptake"]) 
  
  #uptake experiment
  control_recall_1 = as.character(jd$answers$data$answer[1])
  control_recall_2 = as.character(jd$answers$data$answer[2])
  control_recall_3 = as.character(jd$answers$data$answer[3])
  control_recall_4 = as.character(jd$answers$data$answer[4])
  control_recall_5 = as.character(jd$answers$data$answer[5])
  target_generalize_1 = as.character(jd$answers$data$answer[6])
  target_generalize_2 = as.character(jd$answers$data$answer[7])
  target_generalize_3 = as.character(jd$answers$data$answer[8])
  target_generalize_4 = as.character(jd$answers$data$answer[9])
  target_generalize_5 = as.character(jd$answers$data$answer[10])
  target_recall_1 = as.character(jd$answers$data$answer[11])
  target_recall_2 = as.character(jd$answers$data$answer[12])
  target_recall_3 = as.character(jd$answers$data$answer[13])
  target_recall_4 = as.character(jd$answers$data$answer[14])
  target_recall_5 = as.character(jd$answers$data$answer[15])
  
  #demographics
  race <- as.character(jd$answers$data$race[1])
  
  id <- data.frame(workerid = jd$WorkerId, 
                   sent = sent,
                   rating = rating,
                   target_recall_1 = target_recall_1,
                   target_recall_2 = target_recall_2,
                   target_recall_3 = target_recall_3,
                   target_recall_4 = target_recall_4,
                   target_recall_5 = target_recall_5,
                   target_generalize_1 = target_generalize_1,
                   target_generalize_2 = target_generalize_2,
                   target_generalize_3 = target_generalize_3,
                   target_generalize_4 = target_generalize_4,
                   target_generalize_5 = target_generalize_5,
                   control_recall_1 = control_recall_1,
                   control_recall_2 = control_recall_2,
                   control_recall_3 = control_recall_3,
                   control_recall_4 = control_recall_4,
                   control_recall_5 = control_recall_5,
                   children = jd$answers$data$children,
                   language = jd$answers$data$homelang,
                   ses = jd$answers$data$ladder,
                   gender = jd$answers$data$gender,
                   age = jd$answers$data$age,
                   education = jd$answers$data$education,
                   ethnicity = jd$answers$data$ethnicity,
                   childAgeYoung = jd$answers$data$childAgeYoung,
                   childAgeOld = jd$answers$data$childAgeOld,
                   race = race,
                   group = "control"
                    )
  d.raw <- bind_rows(d.raw, id)
}

d.raw <- distinct(d.raw, workerid, sent)

NOTE: 21 participants were dropped from Control group because they had already participated in the Reading experiment.

Map on question short forms so that we can use these instead.

labels <- read.csv("sent_forms_e7.csv")
labels$sent <- as.character(labels$sent)

answers <- read.csv("uptake_key.csv")
answers$tar_gen <-as.character(answers$tar_gen)
answers$tar_rec <-as.character(answers$tar_rec)
answers$con_rec <-as.character(answers$con_rec)

Clean up labels.

d.raw$sent <- as.character(d.raw$sent)
d.raw$sent <- str_replace_all(d.raw$sent, "'", "")
d.raw$sent <- str_replace_all(d.raw$sent, "’", "")
d.raw$sent <- str_replace_all(d.raw$sent, "“", "")
d.raw$sent <- str_replace_all(d.raw$sent, "”", "")
d.raw$sent <- str_replace_all(d.raw$sent, "‘", "")
d.raw$sent <- str_replace_all(d.raw$sent, "â", "")

Merge. Recode uptake answers by accuracy.

d <- left_join(d.raw, labels)
d$rating[d$reverse_code == 1] <- 6 - d$rating[d$reverse_code == 1]

d$target_generalize_1[d$target_generalize_1 != answers$tar_gen[1]] <- 0
d$target_generalize_1[d$target_generalize_1 == answers$tar_gen[1]] <- 1
d$target_generalize_2[d$target_generalize_2 != answers$tar_gen[2]] <- 0
d$target_generalize_2[d$target_generalize_2 == answers$tar_gen[2]] <- 1
d$target_generalize_3[d$target_generalize_3 != answers$tar_gen[3]] <- 0
d$target_generalize_3[d$target_generalize_3 == answers$tar_gen[3]] <- 1
d$target_generalize_4[d$target_generalize_4 != answers$tar_gen[4]] <- 0
d$target_generalize_4[d$target_generalize_4 == answers$tar_gen[4]] <- 1
d$target_generalize_5[d$target_generalize_5 != answers$tar_gen[5]] <- 0
d$target_generalize_5[d$target_generalize_5 == answers$tar_gen[5]] <- 1

d$target_recall_1[d$target_recall_1 != answers$tar_rec[1]] <- 0
d$target_recall_1[d$target_recall_1 == answers$tar_rec[1]] <- 1
d$target_recall_2[d$target_recall_2 != answers$tar_rec[2]] <- 0
d$target_recall_2[d$target_recall_2 == answers$tar_rec[2]] <- 1
d$target_recall_3[d$target_recall_3 != answers$tar_rec[3]] <- 0
d$target_recall_3[d$target_recall_3 == answers$tar_rec[3]] <- 1
d$target_recall_4[d$target_recall_4 != answers$tar_rec[4]] <- 0
d$target_recall_4[d$target_recall_4 == answers$tar_rec[4]] <- 1
d$target_recall_5[d$target_recall_5 != answers$tar_rec[5]] <- 0
d$target_recall_5[d$target_recall_5 == answers$tar_rec[5]] <- 1

d$control_recall_1[d$control_recall_1 != answers$con_rec[1]] <- 0
d$control_recall_1[d$control_recall_1 == answers$con_rec[1]] <- 1
d$control_recall_2[d$control_recall_2 != answers$con_rec[2]] <- 0
d$control_recall_2[d$control_recall_2 == answers$con_rec[2]] <- 1
d$control_recall_3[d$control_recall_3 != answers$con_rec[3]] <- 0
d$control_recall_3[d$control_recall_3 == answers$con_rec[3]] <- 1
d$control_recall_4[d$control_recall_4 != answers$con_rec[4]] <- 0
d$control_recall_4[d$control_recall_4 == answers$con_rec[4]] <- 1
d$control_recall_5[d$control_recall_5 != answers$con_rec[5]] <- 0
d$control_recall_5[d$control_recall_5 == answers$con_rec[5]] <- 1

Plot demographic info.

subinfo <- d %>%
  group_by(workerid) %>%
  select(-short_sent, -category, -instrument, -reverse_code) %>%
  distinct 

questions <- subinfo %>%
  select(workerid, starts_with("target"), starts_with("control")) %>%
  gather(question, correct, starts_with("target"), starts_with("control")) %>%
  separate(question, c("passage","trial_type","q_num"), sep = "_") %>%
  group_by(workerid, passage, trial_type) %>%
  summarise(correct = mean(as.numeric(correct))) %>%
  unite(trialtype, passage, trial_type) %>%
  spread(trialtype, correct)

subinfo <- subinfo %>%
  select(-starts_with("target"), -starts_with("control")) %>%
  left_join(questions) %>%
  select(-sent, -rating)
subinfo$education <- factor(subinfo$education, 
                            levels = c("highSchool","someCollege","4year","someGrad","Grad"))

subinfo$gender <- str_replace_all(subinfo$gender, 
                              "female|FEMALE|F$|f$|Femal$|Females|Females","Female")
subinfo$gender <- str_replace_all(subinfo$gender, 
                                  "^male|^Male|^MALE|^M$|^m$|^Maleq|Make", "Male")
subinfo$gender <- str_replace_all(subinfo$gender, 
                                  "29|24|25|28|32|33|45", "")
subinfo$gender <- str_replace_all(subinfo$gender, 
                                  "males", "male")
subinfo$gender <- str_replace_all(subinfo$gender, " ", "")

subinfo$language <- str_replace_all(subinfo$language, "english|eNGLISH|Engliah|ENGLISH|^eng$|Enlgish", "English")
subinfo$language <- str_replace_all(subinfo$language," ", "")
subinfo$language <- str_replace_all(subinfo$language,"arabic", "Arabic")
subinfo$language <- str_replace_all(subinfo$language,"chinese", "Chinese")
subinfo$language <- str_replace_all(subinfo$language,"german", "German")
subinfo$language <- str_replace_all(subinfo$language,"tagalog", "Tagalog")

subinfo$youngestChildAge <- factor(subinfo$childAgeYoung, levels = c("","0to6mo","7to12mo","1y","2y","3y","4y","5y","6y","7y","8y","9y","10y","olderthan10"))

subinfo$oldestChildAge <- factor(subinfo$childAgeOld, levels = c("","0to6mo","7to12mo","1y","2y","3y","4y","5y","6y","7y","8y","9y","10y","olderthan10"))

subinfo$reading_ease_target <- factor(subinfo$reading_ease_target, levels = c("Very Difficult", "Somewhat Difficult", "Somewhat Easy", "Very Easy"))

subinfo$reading_ease_control <- factor(subinfo$reading_ease_control, levels = c("Very Difficult", "Somewhat Difficult", "Somewhat Easy", "Very Easy"))

subinfo$enjoy_target <- factor(subinfo$enjoy_target, levels = c("Very Unenjoyable", "Somewhat Unenjoyable", "Somewhat Enjoyable", "Very Enjoyable"))

subinfo$enjoy_control <- factor(subinfo$enjoy_control, levels = c("Very Unenjoyable", "Somewhat Unenjoyable", "Somewhat Enjoyable", "Very Enjoyable"))
qplot(ses, data=subinfo)

qplot(children, data=subinfo)

qplot(gender, data=subinfo)

qplot(education, data=subinfo)

qplot(age, data=subinfo)

qplot(language, data=subinfo)

qplot(ethnicity, data=subinfo)

qplot(race, data=subinfo)

qplot(youngestChildAge, data=subinfo)

qplot(oldestChildAge, data=subinfo)

qplot(reading_ease_target, data=subinfo)

qplot(reading_ease_control, data=subinfo)

qplot(enjoy_target, data=subinfo)

qplot(enjoy_control, data=subinfo)

qplot(group, data=subinfo)

2 Basic analyses

Now look at mean ratings across sentences.

rating_count <- table(d$rating) 
rating_count
## 
##    0    1    2    3    4    5    6 
##  149  253  394  954 1374 1922 3576
prop.table(rating_count) 
## 
##          0          1          2          3          4          5 
## 0.01728137 0.02934354 0.04569705 0.11064718 0.15935978 0.22291812 
##          6 
## 0.41475296
ms <- d %>%
  group_by(category, instrument, short_sent, reverse_code) %>%
  multi_boot_standard(col = "rating") %>%
  arrange(instrument, category, desc(mean)) 

ms$short_sent_ord <- factor(ms$short_sent, 
                             levels = ms$short_sent)

Plot attitude.

qplot(short_sent_ord, mean, col = category,
      ymin = ci_lower, ymax = ci_upper, pch = factor(reverse_code),
      geom = "pointrange",
      data = filter(ms, instrument == "attitudes")) +
  theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = .5)) +
  xlab("") + 
  ylab("Mean Rating") + 
  ylim(c(0,6)) + 
  scale_colour_solarized()

Plot mean subscale scores.

mc <- d %>%
  group_by(category) %>%
  multi_boot_standard(col = "rating") %>%
  arrange(category, desc(mean)) 

ggplot(mc, aes(x = category, y = mean)) + 
  geom_bar(stat="identity") + 
  geom_linerange(aes(ymin = ci_lower, ymax = ci_upper), 
             position = position_dodge(width = .9))

mcl <- d %>%
  group_by(category, workerid) %>%
  multi_boot_standard(col = "rating") %>%
  arrange(category, desc(mean))%>%
  spread(category, mean) 

3 Scale reliability

3.1 Whole Scale

wide.attitudes <- d %>%
  dplyr::select(workerid, short_sent, rating) %>%
  spread(short_sent, rating)

alpha.mat <- as.matrix(select(wide.attitudes, -workerid))

summary(psych::alpha(x = alpha.mat))
## 
## Reliability analysis   
##  raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd
##       0.82      0.84    0.87      0.23 5.3 0.015  4.7 0.68

3.2 Rules and Respect Subscale

wide.rules_respect <- d %>% 
  filter(category == "rules_respect") %>%
  select(workerid, short_sent, rating) %>% 
  spread(short_sent, rating)
alpha.rr <- as.matrix(select(wide.rules_respect, -workerid))
summary(psych::alpha(x = alpha.rr))
## 
## Reliability analysis   
##  raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd
##        0.7      0.71     0.7      0.29 2.4 0.032  4.2 0.91

3.3 Affection and Attachment Subscale

wide.affection <- d %>% 
  filter(category == "affection") %>%
  select(workerid, short_sent, rating) %>% 
  spread(short_sent, rating)
alpha.af <- as.matrix(select(wide.affection, -workerid))
summary(psych::alpha(x = alpha.af))
## 
## Reliability analysis   
##  raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd
##       0.76      0.78    0.79      0.37 3.5 0.028  4.8 0.95

3.4 Active Learning Subscale

wide.active_learning <- d %>% 
  filter(category == "active_learning") %>%
  select(workerid, short_sent, rating) %>% 
  spread(short_sent, rating)
alpha.al <- as.matrix(select(wide.active_learning, -workerid))
summary(psych::alpha(x = alpha.al))
## 
## Reliability analysis   
##  raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd
##       0.74      0.75    0.73      0.33 2.9 0.029    5 0.82

4 Information Uptake Analyses

Create a data frame that has subscale scores.

Standardize ratings within subscale.

ds <- d
ds$srating <- ave(ds$rating, ds$category, FUN=scale)

ss <- ds %>%
  group_by(workerid, category) %>%
  summarize(srating = mean(srating)) %>%
  spread(category, srating) %>% 
  left_join(subinfo) %>%
  gather(trial_type, correct, control_recall, target_recall, target_generalize)

ss.long <- ss %>%
  gather(subscale, srating, active_learning, affection, rules_respect) 

4.1 Plots

ggplot(ss.long, aes(x = srating, y = correct, col = subscale)) +
  geom_jitter() + 
  geom_smooth(method="lm", se=FALSE) + 
  facet_wrap(~trial_type)

Setting up exclusion based on reading time.

exclude <- subinfo$workerid[subinfo$reading_time_target < 30 | subinfo$reading_time_control < 30]
length(exclude)
## [1] 277
qplot(subinfo$reading_time_target, binwidth = 15) + 
  geom_vline(xintercept =15, lty =2, col="red")

qplot(subinfo$reading_time_control, binwidth = 15) + 
  geom_vline(xintercept =15, lty =2, col="red")

Both groups with exclusions.

ggplot(filter(ss.long, !workerid %in% exclude), 
       aes(x = srating, y = correct, colour = subscale)) +
  geom_jitter() + 
  geom_smooth(method="lm", se=FALSE) + 
  facet_grid(trial_type ~ group)

4.2 Stats

subscales <- ds %>%
  group_by(workerid, category) %>%
  summarize(srating = mean(srating)) %>%
  spread(category, srating) 

ratings <- d %>% 
  select(workerid, starts_with("target"), starts_with("control"), group) %>%
  gather(question, correct, starts_with("target"), starts_with("control")) %>%
  separate(question, c("passage","trial_type","q_num"), sep = "_") %>%
  mutate(correct = as.numeric(correct), 
         q_num = as.numeric(q_num) + 
           as.numeric(factor(passage)) * 10 + 
           as.numeric(factor(trial_type)) * 100)

d.reg <- left_join(ratings, subscales) %>%
  unite(question_type, passage, trial_type)
summary(glmer(correct ~ question_type * rules_respect + 
                question_type * active_learning + 
                question_type * group * active_learning +
                question_type * group * rules_respect +
                (1|workerid) + 
                (1|q_num), 
              data = filter(d.reg, !workerid %in% exclude), 
              family = "binomial"))
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: binomial  ( logit )
## Formula: 
## correct ~ question_type * rules_respect + question_type * active_learning +  
##     question_type * group * active_learning + question_type *  
##     group * rules_respect + (1 | workerid) + (1 | q_num)
##    Data: filter(d.reg, !workerid %in% exclude)
## 
##      AIC      BIC   logLik deviance df.resid 
## 111476.9 111670.2 -55718.5 111436.9   116350 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -9.6203 -0.6445  0.2408  0.5746  4.2573 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  workerid (Intercept) 1.2598   1.1224  
##  q_num    (Intercept) 0.5498   0.7415  
## Number of obs: 116370, groups:  workerid, 431; q_num, 15
## 
## Fixed effects:
##                                                             Estimate
## (Intercept)                                                 -0.20737
## question_typetarget_generalize                               0.27567
## question_typetarget_recall                                   1.03102
## rules_respect                                                0.21339
## active_learning                                              0.19764
## groupreading                                                 1.21837
## question_typetarget_generalize:rules_respect                -0.34686
## question_typetarget_recall:rules_respect                    -0.30468
## question_typetarget_generalize:active_learning               0.30318
## question_typetarget_recall:active_learning                   0.49712
## question_typetarget_generalize:groupreading                  1.38292
## question_typetarget_recall:groupreading                      0.31912
## active_learning:groupreading                                 0.03264
## rules_respect:groupreading                                  -0.32495
## question_typetarget_generalize:active_learning:groupreading  0.37783
## question_typetarget_recall:active_learning:groupreading      0.06797
## question_typetarget_generalize:rules_respect:groupreading    0.25850
## question_typetarget_recall:rules_respect:groupreading        0.60658
##                                                             Std. Error
## (Intercept)                                                    0.29393
## question_typetarget_generalize                                 0.40453
## question_typetarget_recall                                     0.39538
## rules_respect                                                  0.13332
## active_learning                                                0.13002
## groupreading                                                   0.11161
## question_typetarget_generalize:rules_respect                   0.03911
## question_typetarget_recall:rules_respect                       0.04171
## question_typetarget_generalize:active_learning                 0.03791
## question_typetarget_recall:active_learning                     0.03987
## question_typetarget_generalize:groupreading                    0.03961
## question_typetarget_recall:groupreading                        0.03875
## active_learning:groupreading                                   0.19640
## rules_respect:groupreading                                     0.19328
## question_typetarget_generalize:active_learning:groupreading    0.06736
## question_typetarget_recall:active_learning:groupreading        0.06626
## question_typetarget_generalize:rules_respect:groupreading      0.07309
## question_typetarget_recall:rules_respect:groupreading          0.07002
##                                                             z value
## (Intercept)                                                   -0.71
## question_typetarget_generalize                                 0.68
## question_typetarget_recall                                     2.61
## rules_respect                                                  1.60
## active_learning                                                1.52
## groupreading                                                  10.92
## question_typetarget_generalize:rules_respect                  -8.87
## question_typetarget_recall:rules_respect                      -7.30
## question_typetarget_generalize:active_learning                 8.00
## question_typetarget_recall:active_learning                    12.47
## question_typetarget_generalize:groupreading                   34.91
## question_typetarget_recall:groupreading                        8.24
## active_learning:groupreading                                   0.17
## rules_respect:groupreading                                    -1.68
## question_typetarget_generalize:active_learning:groupreading    5.61
## question_typetarget_recall:active_learning:groupreading        1.03
## question_typetarget_generalize:rules_respect:groupreading      3.54
## question_typetarget_recall:rules_respect:groupreading          8.66
##                                                             Pr(>|z|)    
## (Intercept)                                                 0.480500    
## question_typetarget_generalize                              0.495584    
## question_typetarget_recall                                  0.009117 ** 
## rules_respect                                               0.109460    
## active_learning                                             0.128498    
## groupreading                                                 < 2e-16 ***
## question_typetarget_generalize:rules_respect                 < 2e-16 ***
## question_typetarget_recall:rules_respect                    2.78e-13 ***
## question_typetarget_generalize:active_learning              1.27e-15 ***
## question_typetarget_recall:active_learning                   < 2e-16 ***
## question_typetarget_generalize:groupreading                  < 2e-16 ***
## question_typetarget_recall:groupreading                      < 2e-16 ***
## active_learning:groupreading                                0.868000    
## rules_respect:groupreading                                  0.092718 .  
## question_typetarget_generalize:active_learning:groupreading 2.03e-08 ***
## question_typetarget_recall:active_learning:groupreading     0.305014    
## question_typetarget_generalize:rules_respect:groupreading   0.000406 ***
## question_typetarget_recall:rules_respect:groupreading        < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##                        (Intr) qstn_typtrgt_g qstn_typtrgt_r rls_rs actv_l
## qstn_typtrgt_g         -0.609                                            
## qstn_typtrgt_r         -0.606  0.397                                     
## rules_rspct            -0.001 -0.005         -0.004                      
## activ_lrnng            -0.009  0.002          0.002         -0.344       
## groupreadng            -0.154 -0.007         -0.011          0.013  0.025
## qstn_typtrgt_gnrlz:r_   0.006 -0.004         -0.007         -0.139  0.045
## qstn_typtrgt_rcll:r_    0.005 -0.004         -0.008         -0.131  0.043
## qstn_typtrgt_gnrlz:c_  -0.001 -0.002          0.002          0.043 -0.142
## qstn_typtrgt_rcll:c_   -0.002  0.000          0.004          0.040 -0.135
## qstn_typtrgt_g:         0.012 -0.021         -0.007         -0.002 -0.005
## qstn_typtrgt_r:         0.012 -0.008         -0.023         -0.002 -0.006
## actv_lrnng:            -0.003  0.004          0.011          0.217 -0.645
## rls_rspct:g             0.004  0.000         -0.002         -0.674  0.228
## qstn_typtrgt_gnrlz:c_:  0.005 -0.002         -0.005         -0.022  0.077
## qstn_typtrgt_rcll:c_:   0.007 -0.003         -0.008         -0.022  0.080
## qstn_typtrgt_gnrlz:r_: -0.006  0.004          0.007          0.071 -0.022
## qstn_typtrgt_rcll:r_:  -0.005  0.004          0.007          0.075 -0.025
##                        grprdn qstn_typtrgt_gnrlz:r_ qstn_typtrgt_rcll:r_
## qstn_typtrgt_g                                                          
## qstn_typtrgt_r                                                          
## rules_rspct                                                             
## activ_lrnng                                                             
## groupreadng                                                             
## qstn_typtrgt_gnrlz:r_  -0.004                                           
## qstn_typtrgt_rcll:r_   -0.004  0.471                                    
## qstn_typtrgt_gnrlz:c_  -0.006 -0.345                -0.157              
## qstn_typtrgt_rcll:c_   -0.005 -0.159                -0.367              
## qstn_typtrgt_g:        -0.127  0.017                 0.010              
## qstn_typtrgt_r:        -0.132  0.011                 0.023              
## actv_lrnng:            -0.106 -0.028                -0.028              
## rls_rspct:g             0.004  0.093                 0.088              
## qstn_typtrgt_gnrlz:c_:  0.014  0.192                 0.086              
## qstn_typtrgt_rcll:c_:   0.014  0.094                 0.218              
## qstn_typtrgt_gnrlz:r_: -0.002 -0.532                -0.249              
## qstn_typtrgt_rcll:r_:  -0.001 -0.278                -0.592              
##                        qstn_typtrgt_gnrlz:c_ qstn_typtrgt_rcll:c_
## qstn_typtrgt_g                                                   
## qstn_typtrgt_r                                                   
## rules_rspct                                                      
## activ_lrnng                                                      
## groupreadng                                                      
## qstn_typtrgt_gnrlz:r_                                            
## qstn_typtrgt_rcll:r_                                             
## qstn_typtrgt_gnrlz:c_                                            
## qstn_typtrgt_rcll:c_    0.476                                    
## qstn_typtrgt_g:         0.033                 0.018              
## qstn_typtrgt_r:         0.017                 0.008              
## actv_lrnng:             0.092                 0.088              
## rls_rspct:g            -0.027                -0.025              
## qstn_typtrgt_gnrlz:c_: -0.560                -0.266              
## qstn_typtrgt_rcll:c_:  -0.285                -0.595              
## qstn_typtrgt_gnrlz:r_:  0.183                 0.084              
## qstn_typtrgt_rcll:r_:   0.092                 0.217              
##                        qstn_typtrgt_g: qstn_typtrgt_r: actv_: rls_r:
## qstn_typtrgt_g                                                      
## qstn_typtrgt_r                                                      
## rules_rspct                                                         
## activ_lrnng                                                         
## groupreadng                                                         
## qstn_typtrgt_gnrlz:r_                                               
## qstn_typtrgt_rcll:r_                                                
## qstn_typtrgt_gnrlz:c_                                               
## qstn_typtrgt_rcll:c_                                                
## qstn_typtrgt_g:                                                     
## qstn_typtrgt_r:         0.410                                       
## actv_lrnng:             0.014           0.014                       
## rls_rspct:g            -0.003          -0.002          -0.286       
## qstn_typtrgt_gnrlz:c_:  0.015          -0.031          -0.130  0.037
## qstn_typtrgt_rcll:c_:  -0.032          -0.020          -0.136  0.039
## qstn_typtrgt_gnrlz:r_: -0.022           0.011           0.035 -0.122
## qstn_typtrgt_rcll:r_:   0.012           0.026           0.040 -0.131
##                        qstn_typtrgt_gnrlz:c_: qstn_typtrgt_rcll:c_:
## qstn_typtrgt_g                                                     
## qstn_typtrgt_r                                                     
## rules_rspct                                                        
## activ_lrnng                                                        
## groupreadng                                                        
## qstn_typtrgt_gnrlz:r_                                              
## qstn_typtrgt_rcll:r_                                               
## qstn_typtrgt_gnrlz:c_                                              
## qstn_typtrgt_rcll:c_                                               
## qstn_typtrgt_g:                                                    
## qstn_typtrgt_r:                                                    
## actv_lrnng:                                                        
## rls_rspct:g                                                        
## qstn_typtrgt_gnrlz:c_:                                             
## qstn_typtrgt_rcll:c_:   0.434                                      
## qstn_typtrgt_gnrlz:r_: -0.370                 -0.130               
## qstn_typtrgt_rcll:r_:  -0.134                 -0.344               
##                        qstn_typtrgt_gnrlz:r_:
## qstn_typtrgt_g                               
## qstn_typtrgt_r                               
## rules_rspct                                  
## activ_lrnng                                  
## groupreadng                                  
## qstn_typtrgt_gnrlz:r_                        
## qstn_typtrgt_rcll:r_                         
## qstn_typtrgt_gnrlz:c_                        
## qstn_typtrgt_rcll:c_                         
## qstn_typtrgt_g:                              
## qstn_typtrgt_r:                              
## actv_lrnng:                                  
## rls_rspct:g                                  
## qstn_typtrgt_gnrlz:c_:                       
## qstn_typtrgt_rcll:c_:                        
## qstn_typtrgt_gnrlz:r_:                       
## qstn_typtrgt_rcll:r_:   0.399