Trails B-A/A Regression Models

## Loading required package: Matrix
## KernSmooth 2.23 loaded
## Copyright M. P. Wand 1997-2009
## 
## Attaching package: 'lmerTest'
## 
## The following object is masked from 'package:lme4':
## 
##     lmer
## 
## The following object is masked from 'package:stats':
## 
##     step

Trails B-A/A Regression Model 1


(mm1 = lmer(IPVandCognitionDataSet2$"TrailsB-A/A" ~ (Age + IPVstatus + Sex + 
    Race)^4 + (Age | HNDid) + (1 | subclass), data = IPVandCognitionDataSet2, 
    REML = F))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by maximum likelihood ['merModLmerTest']
## Formula: IPVandCognitionDataSet2$"TrailsB-A/A" ~ (Age + IPVstatus + Sex +      Race)^4 + (Age | HNDid) + (1 | subclass) 
##    Data: IPVandCognitionDataSet2 
##      AIC      BIC   logLik deviance 
##    685.2    744.8   -321.6    643.2 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 3.8358       
##           Age         0.1080   1.00
##  subclass (Intercept) 0.0001       
##  Residual             2.0046       
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## Fixed Effects:
##                     (Intercept)                              Age  
##                          1.2354                          -0.0492  
##                      IPVstatus1                           SexMen  
##                          0.3820                           0.2026  
##                       RaceAfrAm                   Age:IPVstatus1  
##                          3.2317                           0.0694  
##                      Age:SexMen                    Age:RaceAfrAm  
##                          0.0727                           0.0509  
##               IPVstatus1:SexMen             IPVstatus1:RaceAfrAm  
##                          4.7251                          -4.2402  
##                SexMen:RaceAfrAm            Age:IPVstatus1:SexMen  
##                         -1.3036                           0.2379  
##        Age:IPVstatus1:RaceAfrAm             Age:SexMen:RaceAfrAm  
##                         -0.1458                           0.0470  
##     IPVstatus1:SexMen:RaceAfrAm  Age:IPVstatus1:SexMen:RaceAfrAm  
##                          2.2568                          -0.5267

(st = step(mm1))
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: 
##  model has been refitted with REML=TRUE 
## 
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Random term (Age | HNDid) was eliminated because of having correlation +-1 or NaN
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Random term (1 | subclass) was eliminated because of standard deviation being equal to 0
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Random term (Age + 0 | HNDid) was eliminated because of standard deviation being equal to 0
## 
## Random effects:
##             Chi.sq Chi.DF elim.num p.value
## (1 | HNDid)  32.18      1     kept < 1e-07
## 
## Fixed effects:
##                         Sum Sq Mean Sq NumDF  DenDF F.value elim.num
## Age:IPVstatus:Sex:Race  7.6061  7.6061     1 109.32  1.5389        1
## Age:IPVstatus:Sex       0.5819  0.5819     1 110.45  0.2848        2
## Age:Sex:Race            2.3297  2.3297     1 111.87  0.3411        3
## Age:Sex                 2.7335  2.7335     1 112.99  0.5717        4
## IPVstatus:Sex:Race      6.8026  6.8026     1  51.83  1.2286        5
## Sex:Race                0.1229  0.1229     1  53.42  0.1092        6
## Age:IPVstatus:Race     14.6821 14.6821     1 115.91  2.5723        7
## Age:IPVstatus           0.0465  0.0465     1 116.50  0.1707        8
## IPVstatus:Race          0.6457  0.6457     1  53.26  0.2375        9
## Age:Race                7.1186  7.1186     1 118.74  0.5927       10
## Age                     0.2662  0.2662     1 119.91  0.0121       11
## Race                   22.8557 22.8557     1  58.00  3.0459       12
## IPVstatus               4.0744  4.0744     1  59.00  1.3190     kept
## Sex                     6.5221  6.5221     1  59.00  4.4171     kept
## IPVstatus:Sex          46.0172 46.0172     1  59.00 10.0837     kept
##                        Pr(>F)
## Age:IPVstatus:Sex:Race 0.2174
## Age:IPVstatus:Sex      0.5947
## Age:Sex:Race           0.5604
## Age:Sex                0.4512
## IPVstatus:Sex:Race     0.2728
## Sex:Race               0.7424
## Age:IPVstatus:Race     0.1115
## Age:IPVstatus          0.6803
## IPVstatus:Race         0.6280
## Age:Race               0.4429
## Age                    0.9125
## Race                   0.0862
## IPVstatus              0.2554
## Sex                    0.0399
## IPVstatus:Sex          0.0024
## 
## Least squares means:
##                        IPVstatus Sex Estimate Standard Error DF t-value
## IPVstatus  0                   1  NA    2.780          0.587 59    4.74
## IPVstatus  1                   2  NA    3.948          0.830 59    4.76
## Sex  Women                    NA   2    2.296          0.702 59    3.27
## Sex  Men                      NA   1    4.433          0.736 59    6.02
## IPVstatus:Sex  0 Women         1   2    3.326          0.887 59    3.75
## IPVstatus:Sex  1 Women         2   2    1.266          1.087 59    1.16
## IPVstatus:Sex  0 Men           1   1    2.235          0.768 59    2.91
## IPVstatus:Sex  1 Men           2   1    6.630          1.255 59    5.28
##                        Lower CI Upper CI p-value
## IPVstatus  0              1.606     3.95  <2e-16
## IPVstatus  1              2.287     5.61  <2e-16
## Sex  Women                0.892     3.70  0.0018
## Sex  Men                  2.960     5.90  <2e-16
## IPVstatus:Sex  0 Women    1.551     5.10  0.0004
## IPVstatus:Sex  1 Women   -0.909     3.44  0.2489
## IPVstatus:Sex  0 Men      0.697     3.77  0.0051
## IPVstatus:Sex  1 Men      4.119     9.14  <2e-16
## 
##  Differences of LSMEANS:
##                                 Estimate Standard Error   DF t-value
## IPVstatus 0-1                       -1.2          1.017 59.0   -1.15
## Sex Women-Men                       -2.1          1.017 59.0   -2.10
## IPVstatus:Sex  0 Women- 1 Women      2.1          1.403 59.0    1.47
## IPVstatus:Sex  0 Women- 0 Men        1.1          1.174 59.0    0.93
## IPVstatus:Sex  0 Women- 1 Men       -3.3          1.537 59.0   -2.15
## IPVstatus:Sex  1 Women- 0 Men       -1.0          1.331 59.0   -0.73
## IPVstatus:Sex  1 Women- 1 Men       -5.4          1.660 59.0   -3.23
## IPVstatus:Sex  0 Men- 1 Men         -4.4          1.472 59.0   -2.99
##                                 Lower CI Upper CI p-value
## IPVstatus 0-1                     -3.202    0.867   0.255
## Sex Women-Men                     -4.171   -0.102   0.040
## IPVstatus:Sex  0 Women- 1 Women   -0.747    4.868   0.147
## IPVstatus:Sex  0 Women- 0 Men     -1.257    3.441   0.356
## IPVstatus:Sex  0 Women- 1 Men     -6.380   -0.229   0.036
## IPVstatus:Sex  1 Women- 0 Men     -3.632    1.694   0.469
## IPVstatus:Sex  1 Women- 1 Men     -8.687   -2.043   0.002
## IPVstatus:Sex  0 Men- 1 Men       -7.340   -1.451   0.004
## 
## Final model:
## lme4::lmer(formula = IPVandCognitionDataSet2$"TrailsB-A/A" ~ 
##     IPVstatus + Sex + (1 | HNDid) + IPVstatus:Sex, data = IPVandCognitionDataSet2, 
##     REML = reml, contrasts = l)

Re-run the suggested final Model 1

(mm1 = lmer(IPVandCognitionDataSet2$"TrailsB-A/A" ~ IPVstatus + Sex + (Age | 
    HNDid) + (1 | subclass) + IPVstatus:Sex, data = IPVandCognitionDataSet2, 
    REML = F))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by maximum likelihood ['merModLmerTest']
## Formula: IPVandCognitionDataSet2$"TrailsB-A/A" ~ IPVstatus + Sex + (Age |      HNDid) + (1 | subclass) + IPVstatus:Sex 
##    Data: IPVandCognitionDataSet2 
##      AIC      BIC   logLik deviance 
##    674.2    699.8   -328.1    656.2 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 3.9720       
##           Age         0.0744   1.00
##  subclass (Intercept) 0.0000       
##  Residual             2.0177       
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## Fixed Effects:
##       (Intercept)         IPVstatus1             SexMen  
##              3.58              -2.27              -1.54  
## IPVstatus1:SexMen  
##              6.98

summary(mm1)
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Linear mixed model fit by maximum likelihood ['merModLmerTest']
## Formula: IPVandCognitionDataSet2$"TrailsB-A/A" ~ IPVstatus + Sex + (Age |      HNDid) + (1 | subclass) + IPVstatus:Sex 
##    Data: IPVandCognitionDataSet2 
## 
##      AIC      BIC   logLik deviance 
##    674.2    699.8   -328.1    656.2 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  HNDid    (Intercept) 15.77679 3.9720       
##           Age          0.00554 0.0744   1.00
##  subclass (Intercept)  0.00000 0.0000       
##  Residual              4.07102 2.0177       
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## 
## Fixed effects:
##                   Estimate Std. Error     df t value Pr(>|t|)
## (Intercept)          3.581      0.852 60.800    4.21  8.7e-05
## IPVstatus1          -2.269      1.354 63.700   -1.68   0.0986
## SexMen              -1.545      1.144 64.600   -1.35   0.1816
## IPVstatus1:SexMen    6.976      1.981 64.500    3.52   0.0008
## 
## Correlation of Fixed Effects:
##             (Intr) IPVst1 SexMen
## IPVstatus1  -0.629              
## SexMen      -0.744  0.468       
## IPVstts1:SM  0.430 -0.683 -0.577

plot(st)

plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2


plot(mm1)

plot of chunk unnamed-chunk-2

Trails B-A/A Regression Model 2 (with CES)


(mm2 = lmer(IPVandCognitionDataSet2$"TrailsB-A/A" ~ (Age + IPVstatus + Sex + 
    Race + CES1)^5 + (Age | HNDid) + (1 | subclass), data = IPVandCognitionDataSet2, 
    REML = F))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by maximum likelihood ['merModLmerTest']
## Formula: IPVandCognitionDataSet2$"TrailsB-A/A" ~ (Age + IPVstatus + Sex +      Race + CES1)^5 + (Age | HNDid) + (1 | subclass) 
##    Data: IPVandCognitionDataSet2 
##      AIC      BIC   logLik deviance 
##    707.5    812.4   -316.7    633.5 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 5.51e+00     
##           Age         2.43e-01 1.00
##  subclass (Intercept) 3.81e-07     
##  Residual             1.61e+00     
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## Fixed Effects:
##                           (Intercept)  
##                                1.5535  
##                                   Age  
##                                0.0017  
##                            IPVstatus1  
##                               -0.2765  
##                                SexMen  
##                               -0.2353  
##                             RaceAfrAm  
##                                9.1593  
##                                 CES11  
##                               -0.4135  
##                        Age:IPVstatus1  
##                               -0.0262  
##                            Age:SexMen  
##                                0.0164  
##                         Age:RaceAfrAm  
##                                0.4349  
##                             Age:CES11  
##                               -0.0708  
##                     IPVstatus1:SexMen  
##                                6.3176  
##                  IPVstatus1:RaceAfrAm  
##                              -10.8837  
##                      IPVstatus1:CES11  
##                                1.1579  
##                      SexMen:RaceAfrAm  
##                               -7.4982  
##                          SexMen:CES11  
##                                0.2199  
##                       RaceAfrAm:CES11  
##                              -10.9525  
##                 Age:IPVstatus1:SexMen  
##                                0.3269  
##              Age:IPVstatus1:RaceAfrAm  
##                               -0.5835  
##                  Age:IPVstatus1:CES11  
##                                0.1528  
##                  Age:SexMen:RaceAfrAm  
##                               -0.3957  
##                      Age:SexMen:CES11  
##                                0.0340  
##                   Age:RaceAfrAm:CES11  
##                               -0.6306  
##           IPVstatus1:SexMen:RaceAfrAm  
##                               14.3631  
##               IPVstatus1:SexMen:CES11  
##                               -5.7375  
##            IPVstatus1:RaceAfrAm:CES11  
##                               11.7321  
##                SexMen:RaceAfrAm:CES11  
##                               12.2423  
##       Age:IPVstatus1:SexMen:RaceAfrAm  
##                                0.2255  
##           Age:IPVstatus1:SexMen:CES11  
##                               -0.2797  
##        Age:IPVstatus1:RaceAfrAm:CES11  
##                                0.7424  
##            Age:SexMen:RaceAfrAm:CES11  
##                                0.8445  
##     IPVstatus1:SexMen:RaceAfrAm:CES11  
##                              -13.6014  
## Age:IPVstatus1:SexMen:RaceAfrAm:CES11  
##                               -0.8037

(st = step(mm2))
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: 
##  model has been refitted with REML=TRUE 
## 
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Random term (Age | HNDid) was eliminated because of having correlation +-1 or NaN
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Random term (Age + 0 | HNDid) was eliminated because of standard deviation being equal to 0
## 
## Random effects:
##                Chi.sq Chi.DF elim.num p.value
## (1 | subclass)   0.08      1        1  0.7793
## (1 | HNDid)     27.00      1     kept       0
## 
## Fixed effects:
##                              Sum Sq Mean Sq NumDF  DenDF F.value elim.num
## Age:IPVstatus:Sex:Race:CES1  0.2827  0.2827     1  53.52  0.0553        1
## Age:IPVstatus:Race:CES1      0.0687  0.0687     1  61.23  0.0450        2
## IPVstatus:Sex:Race:CES1      0.2828  0.2828     1  60.48  0.0681        3
## IPVstatus:Race:CES1          0.3367  0.3367     1  52.84  0.0812        4
## Age:Sex:Race:CES1            0.7430  0.7430     1  79.14  0.0794        5
## Age:Race:CES1                0.7460  0.7460     1  81.11  0.0214        6
## Sex:Race:CES1                0.3224  0.3224     1  42.09  0.0514        7
## Race:CES1                    1.6171  1.6171     1  44.07  0.1430        8
## Age:IPVstatus:Sex:Race       4.3961  4.3961     1 100.61  0.2139        9
## Age:Sex:Race                 2.6591  2.6591     1 101.46  0.0838       10
## Age:IPVstatus:Race          10.1705 10.1705     1 101.80  0.6406       11
## Age:Race                     4.3602  4.3602     1 103.20  0.0492       12
## Age:IPVstatus:Sex:CES1       2.2309  2.2309     1 105.86  2.4681       13
## Age:Sex:CES1                 3.3125  3.3125     1 106.66  0.0290       14
## Age:IPVstatus:Sex            0.3145  0.3145     1 107.96  0.1028       15
## Age:IPVstatus:CES1           0.2185  0.2185     1 108.60  0.1154       16
## Age:IPVstatus                0.0064  0.0064     1 109.89  0.0291       17
## Age:CES1                     1.8053  1.8053     1 110.89  0.7205       18
## Age:Sex                      2.2057  2.2057     1 111.92  1.2338       19
## Age                          0.6052  0.6052     1 112.99  0.0500       20
## IPVstatus:Sex:Race           6.8717  6.8717     1  51.00  2.6251       21
## IPVstatus:Race               0.5951  0.5951     1  52.00  0.0017       22
## Sex:Race                     0.3189  0.3189     1  53.00  0.1573       23
## IPVstatus:Sex:CES1           9.5512  9.5512     1  54.00  2.2465       24
## Sex:CES1                     0.0532  0.0532     1  55.00  0.0004       25
## IPVstatus:CES1               0.0070  0.0070     1  56.00  0.0243       26
## CES1                         2.5915  2.5915     1  57.00  0.8854       27
## Race                        18.9616 18.9616     1  58.00  3.0459       28
## IPVstatus                    3.4647  3.4647     1  59.00  1.3190     kept
## Sex                          5.4117  5.4117     1  59.00  4.4171     kept
## IPVstatus:Sex               40.0130 40.0130     1  59.00 10.0837     kept
##                             Pr(>F)
## Age:IPVstatus:Sex:Race:CES1 0.8150
## Age:IPVstatus:Race:CES1     0.8327
## IPVstatus:Sex:Race:CES1     0.7950
## IPVstatus:Race:CES1         0.7768
## Age:Sex:Race:CES1           0.7788
## Age:Race:CES1               0.8839
## Sex:Race:CES1               0.8218
## Race:CES1                   0.7071
## Age:IPVstatus:Sex:Race      0.6447
## Age:Sex:Race                0.7729
## Age:IPVstatus:Race          0.4253
## Age:Race                    0.8249
## Age:IPVstatus:Sex:CES1      0.1192
## Age:Sex:CES1                0.8651
## Age:IPVstatus:Sex           0.7491
## Age:IPVstatus:CES1          0.7347
## Age:IPVstatus               0.8649
## Age:CES1                    0.3978
## Age:Sex                     0.2691
## Age                         0.8235
## IPVstatus:Sex:Race          0.1114
## IPVstatus:Race              0.9674
## Sex:Race                    0.6932
## IPVstatus:Sex:CES1          0.1397
## Sex:CES1                    0.9833
## IPVstatus:CES1              0.8766
## CES1                        0.3507
## Race                        0.0862
## IPVstatus                   0.2554
## Sex                         0.0399
## IPVstatus:Sex               0.0024
## 
## Least squares means:
##                        IPVstatus Sex Estimate Standard Error DF t-value
## IPVstatus  0                   1  NA    2.780          0.587 59    4.74
## IPVstatus  1                   2  NA    3.948          0.830 59    4.76
## Sex  Women                    NA   2    2.296          0.702 59    3.27
## Sex  Men                      NA   1    4.433          0.736 59    6.02
## IPVstatus:Sex  0 Women         1   2    3.326          0.887 59    3.75
## IPVstatus:Sex  1 Women         2   2    1.266          1.087 59    1.16
## IPVstatus:Sex  0 Men           1   1    2.235          0.768 59    2.91
## IPVstatus:Sex  1 Men           2   1    6.630          1.255 59    5.28
##                        Lower CI Upper CI p-value
## IPVstatus  0              1.606     3.95  <2e-16
## IPVstatus  1              2.287     5.61  <2e-16
## Sex  Women                0.892     3.70  0.0018
## Sex  Men                  2.960     5.90  <2e-16
## IPVstatus:Sex  0 Women    1.551     5.10  0.0004
## IPVstatus:Sex  1 Women   -0.909     3.44  0.2489
## IPVstatus:Sex  0 Men      0.697     3.77  0.0051
## IPVstatus:Sex  1 Men      4.119     9.14  <2e-16
## 
##  Differences of LSMEANS:
##                                 Estimate Standard Error   DF t-value
## IPVstatus 0-1                       -1.2          1.017 59.0   -1.15
## Sex Women-Men                       -2.1          1.017 59.0   -2.10
## IPVstatus:Sex  0 Women- 1 Women      2.1          1.403 59.0    1.47
## IPVstatus:Sex  0 Women- 0 Men        1.1          1.174 59.0    0.93
## IPVstatus:Sex  0 Women- 1 Men       -3.3          1.537 59.0   -2.15
## IPVstatus:Sex  1 Women- 0 Men       -1.0          1.331 59.0   -0.73
## IPVstatus:Sex  1 Women- 1 Men       -5.4          1.660 59.0   -3.23
## IPVstatus:Sex  0 Men- 1 Men         -4.4          1.472 59.0   -2.99
##                                 Lower CI Upper CI p-value
## IPVstatus 0-1                     -3.202    0.867   0.255
## Sex Women-Men                     -4.171   -0.102   0.040
## IPVstatus:Sex  0 Women- 1 Women   -0.747    4.868   0.147
## IPVstatus:Sex  0 Women- 0 Men     -1.257    3.441   0.356
## IPVstatus:Sex  0 Women- 1 Men     -6.380   -0.229   0.036
## IPVstatus:Sex  1 Women- 0 Men     -3.632    1.694   0.469
## IPVstatus:Sex  1 Women- 1 Men     -8.687   -2.043   0.002
## IPVstatus:Sex  0 Men- 1 Men       -7.340   -1.451   0.004
## 
## Final model:
## lme4::lmer(formula = IPVandCognitionDataSet2$"TrailsB-A/A" ~ 
##     IPVstatus + Sex + (1 | HNDid) + IPVstatus:Sex, data = IPVandCognitionDataSet2, 
##     REML = reml, contrasts = l)

Re-run the suggested final Model 2

(mm2 = lmer(IPVandCognitionDataSet2$"TrailsB-A/A" ~ IPVstatus + Sex + (Age | 
    HNDid) + (1 | subclass) + IPVstatus:Sex, data = IPVandCognitionDataSet2, 
    REML = F))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by maximum likelihood ['merModLmerTest']
## Formula: IPVandCognitionDataSet2$"TrailsB-A/A" ~ IPVstatus + Sex + (Age |      HNDid) + (1 | subclass) + IPVstatus:Sex 
##    Data: IPVandCognitionDataSet2 
##      AIC      BIC   logLik deviance 
##    674.2    699.8   -328.1    656.2 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 3.9720       
##           Age         0.0744   1.00
##  subclass (Intercept) 0.0000       
##  Residual             2.0177       
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## Fixed Effects:
##       (Intercept)         IPVstatus1             SexMen  
##              3.58              -2.27              -1.54  
## IPVstatus1:SexMen  
##              6.98

summary(mm2)
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Linear mixed model fit by maximum likelihood ['merModLmerTest']
## Formula: IPVandCognitionDataSet2$"TrailsB-A/A" ~ IPVstatus + Sex + (Age |      HNDid) + (1 | subclass) + IPVstatus:Sex 
##    Data: IPVandCognitionDataSet2 
## 
##      AIC      BIC   logLik deviance 
##    674.2    699.8   -328.1    656.2 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  HNDid    (Intercept) 15.77679 3.9720       
##           Age          0.00554 0.0744   1.00
##  subclass (Intercept)  0.00000 0.0000       
##  Residual              4.07102 2.0177       
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## 
## Fixed effects:
##                   Estimate Std. Error     df t value Pr(>|t|)
## (Intercept)          3.581      0.852 60.800    4.21  8.7e-05
## IPVstatus1          -2.269      1.354 63.700   -1.68   0.0986
## SexMen              -1.545      1.144 64.600   -1.35   0.1816
## IPVstatus1:SexMen    6.976      1.981 64.500    3.52   0.0008
## 
## Correlation of Fixed Effects:
##             (Intr) IPVst1 SexMen
## IPVstatus1  -0.629              
## SexMen      -0.744  0.468       
## IPVstts1:SM  0.430 -0.683 -0.577

plot(st)

plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4


plot(mm2)

plot of chunk unnamed-chunk-4