Trails B:A Regression Models

## Loading required package: Matrix
## KernSmooth 2.23 loaded
## Copyright M. P. Wand 1997-2009
## 
## Attaching package: 'lmerTest'
## 
## The following object is masked from 'package:lme4':
## 
##     lmer
## 
## The following object is masked from 'package:stats':
## 
##     step

Trails B:A Regression Model 1


(mm1 = lmer(IPVandCognitionDataSet2$"TrailsB:A" ~ (Age + IPVstatus + Sex + PovStat)^4 + 
    (Age | HNDid) + (1 | subclass), data = IPVandCognitionDataSet2))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: IPVandCognitionDataSet2$"TrailsB:A" ~ (Age + IPVstatus + Sex +      PovStat)^4 + (Age | HNDid) + (1 | subclass) 
##    Data: IPVandCognitionDataSet2 
## REML criterion at convergence: 593.1 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 5.31e+00     
##           Age         2.15e-01 1.00
##  subclass (Intercept) 1.35e-05     
##  Residual             1.43e+00     
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## Fixed Effects:
##                        (Intercept)                                 Age  
##                             4.2644                              0.0261  
##                         IPVstatus1                              SexMen  
##                            -2.2151                             -1.9660  
##                       PovStatBelow                      Age:IPVstatus1  
##                             2.9750                             -0.0714  
##                         Age:SexMen                    Age:PovStatBelow  
##                            -0.0571                              0.3123  
##                  IPVstatus1:SexMen             IPVstatus1:PovStatBelow  
##                             6.9839                             -3.7097  
##                SexMen:PovStatBelow               Age:IPVstatus1:SexMen  
##                             0.5953                             -0.1587  
##        Age:IPVstatus1:PovStatBelow             Age:SexMen:PovStatBelow  
##                            -0.3304                             -0.0554  
##     IPVstatus1:SexMen:PovStatBelow  Age:IPVstatus1:SexMen:PovStatBelow  
##                            -0.6478                              0.5884

(st = step(mm1))
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Random term (Age | HNDid) was eliminated because of having correlation +-1 or NaN
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Random term (1 | subclass) was eliminated because of standard deviation being equal to 0
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Random term (Age + 0 | HNDid) was eliminated because of standard deviation being equal to 0
## 
## Random effects:
##             Chi.sq Chi.DF elim.num p.value
## (1 | HNDid)  67.25      1     kept < 1e-07
## 
## Fixed effects:
##                            Sum Sq Mean Sq NumDF  DenDF F.value elim.num
## Age:IPVstatus:Sex:PovStat  2.1829  2.1829     1  95.42  0.8563        1
## Age:IPVstatus:Sex          0.0314  0.0314     1  99.55  0.0014        2
## Age:IPVstatus:PovStat      0.0654  0.0654     1 101.87  0.0202        3
## Age:IPVstatus              1.4070  1.4070     1 104.47  0.5698        4
## Age:Sex:PovStat            2.8983  2.8983     1 110.92  0.7175        5
## Age:Sex                    0.2104  0.2104     1 109.52  0.0039        6
## IPVstatus:Sex:PovStat      4.0913  4.0913     1  52.99  2.1556        7
## Sex:PovStat                0.0011  0.0011     1  56.96  0.0002        8
## IPVstatus:PovStat          4.4102  4.4102     1  55.11  2.1265        9
## Age                        5.1626  5.1626     1 116.69  3.6119     kept
## IPVstatus                  1.6390  1.6390     1  56.25  1.5766     kept
## Sex                        5.2384  5.2384     1  57.40  3.9280     kept
## PovStat                    0.1884  0.1884     1  78.16  1.4353     kept
## Age:PovStat               16.5689 16.5689     1 116.30  6.5051     kept
## IPVstatus:Sex             21.6601 21.6601     1  56.24  8.1093     kept
##                           Pr(>F)
## Age:IPVstatus:Sex:PovStat 0.3571
## Age:IPVstatus:Sex         0.9706
## Age:IPVstatus:PovStat     0.8873
## Age:IPVstatus             0.4520
## Age:Sex:PovStat           0.3988
## Age:Sex                   0.9501
## IPVstatus:Sex:PovStat     0.1480
## Sex:PovStat               0.9878
## IPVstatus:PovStat         0.1504
## Age                       0.0598
## IPVstatus                 0.2144
## Sex                       0.0523
## PovStat                   0.2345
## Age:PovStat               0.0121
## IPVstatus:Sex             0.0061
## 
## Least squares means:
##                        IPVstatus  Sex PovStat Estimate Standard Error   DF
## IPVstatus  0                 1.0   NA      NA    3.423          0.620 58.5
## IPVstatus  1                 2.0   NA      NA    4.689          0.845 57.0
## Sex  Women                    NA  2.0      NA    3.045          0.707 56.3
## Sex  Men                      NA  1.0      NA    5.067          0.782 59.6
## PovStat  Above                NA   NA     1.0    4.215          0.608 57.2
## PovStat  Below                NA   NA     2.0    3.897          0.873 59.5
## IPVstatus:Sex  0 Women       1.0  2.0      NA    3.854          0.820 56.5
## IPVstatus:Sex  1 Women       2.0  2.0      NA    2.236          1.109 56.2
## IPVstatus:Sex  0 Men         1.0  1.0      NA    2.992          0.880 59.0
## IPVstatus:Sex  1 Men         2.0  1.0      NA    7.142          1.259 57.4
##                        t-value Lower CI Upper CI p-value
## IPVstatus  0              5.52   2.1814     4.67  <2e-16
## IPVstatus  1              5.55   2.9972     6.38  <2e-16
## Sex  Women                4.31   1.6291     4.46  0.0001
## Sex  Men                  6.48   3.5025     6.63  <2e-16
## PovStat  Above            6.93   2.9965     5.43  <2e-16
## PovStat  Below            4.47   2.1512     5.64  <2e-16
## IPVstatus:Sex  0 Women    4.70   2.2111     5.50  <2e-16
## IPVstatus:Sex  1 Women    2.02   0.0133     4.46  0.0487
## IPVstatus:Sex  0 Men      3.40   1.2325     4.75  0.0012
## IPVstatus:Sex  1 Men      5.67   4.6201     9.66  <2e-16
## 
##  Differences of LSMEANS:
##                                 Estimate Standard Error   DF t-value
## IPVstatus 0-1                       -1.3          1.008 56.2   -1.26
## Sex Women-Men                       -2.0          1.020 57.4   -1.98
## PovStat Above-Below                  0.3          1.040 58.7    0.31
## IPVstatus:Sex  0 Women- 1 Women      1.6          1.345 56.4    1.20
## IPVstatus:Sex  0 Women- 0 Men        0.9          1.163 57.0    0.74
## IPVstatus:Sex  0 Women- 1 Men       -3.3          1.490 56.6   -2.21
## IPVstatus:Sex  1 Women- 0 Men       -0.8          1.375 57.1   -0.55
## IPVstatus:Sex  1 Women- 1 Men       -4.9          1.667 56.7   -2.94
## IPVstatus:Sex  0 Men- 1 Men         -4.1          1.508 56.2   -2.75
##                                 Lower CI Upper CI p-value
## IPVstatus 0-1                      -3.28   0.7532   0.214
## Sex Women-Men                      -4.06   0.0207   0.052
## PovStat Above-Below                -1.76   2.3990   0.761
## IPVstatus:Sex  0 Women- 1 Women    -1.08   4.3129   0.234
## IPVstatus:Sex  0 Women- 0 Men      -1.47   3.1911   0.462
## IPVstatus:Sex  0 Women- 1 Men      -6.27  -0.3028   0.032
## IPVstatus:Sex  1 Women- 0 Men      -3.51   1.9976   0.584
## IPVstatus:Sex  1 Women- 1 Men      -8.25  -1.5668   0.005
## IPVstatus:Sex  0 Men- 1 Men        -7.17  -1.1294   0.008
## 
## Final model:
## lme4::lmer(formula = IPVandCognitionDataSet2$"TrailsB:A" ~ Age + 
##     IPVstatus + Sex + PovStat + (1 | HNDid) + Age:PovStat + IPVstatus:Sex, 
##     data = IPVandCognitionDataSet2, REML = reml, contrasts = l)

Re-run the suggested final Model 1

(mm1 = lmer(IPVandCognitionDataSet2$"TrailsB:A" ~ Age + IPVstatus + Sex + PovStat + 
    (Age | HNDid) + (1 | subclass) + Age:PovStat + IPVstatus:Sex, data = IPVandCognitionDataSet2))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: IPVandCognitionDataSet2$"TrailsB:A" ~ Age + IPVstatus + Sex +      PovStat + (Age | HNDid) + (1 | subclass) + Age:PovStat +      IPVstatus:Sex 
##    Data: IPVandCognitionDataSet2 
## REML criterion at convergence: 606.6 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 4.88e+00     
##           Age         1.71e-01 0.95
##  subclass (Intercept) 1.10e-06     
##  Residual             1.42e+00     
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## Fixed Effects:
##       (Intercept)                Age         IPVstatus1  
##            3.6907            -0.0347            -1.3308  
##            SexMen       PovStatBelow   Age:PovStatBelow  
##           -1.0897             1.8562             0.2881  
## IPVstatus1:SexMen  
##            6.5609

summary(mm1)
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: IPVandCognitionDataSet2$"TrailsB:A" ~ Age + IPVstatus + Sex +      PovStat + (Age | HNDid) + (1 | subclass) + Age:PovStat +      IPVstatus:Sex 
##    Data: IPVandCognitionDataSet2 
## 
## REML criterion at convergence: 606.6 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  HNDid    (Intercept) 2.39e+01 4.88e+00     
##           Age         2.94e-02 1.71e-01 0.95
##  subclass (Intercept) 1.22e-12 1.10e-06     
##  Residual             2.02e+00 1.42e+00     
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## 
## Fixed effects:
##                   Estimate Std. Error      df t value Pr(>|t|)
## (Intercept)         3.6907     1.1101 53.9000    3.32   0.0016
## Age                -0.0347     0.0608 48.2000   -0.57   0.5711
## IPVstatus1         -1.3308     1.2244 49.8000   -1.09   0.2823
## SexMen             -1.0897     1.0537 46.0000   -1.03   0.3065
## PovStatBelow        1.8562     1.5362 24.7000    1.21   0.2384
## Age:PovStatBelow    0.2881     0.1033 36.9000    2.79   0.0083
## IPVstatus1:SexMen   6.5609     1.8723 47.8000    3.50   0.0010
## 
## Correlation of Fixed Effects:
##             (Intr) Age    IPVst1 SexMen PvSttB Ag:PSB
## Age          0.739                                   
## IPVstatus1  -0.423 -0.089                            
## SexMen      -0.457 -0.031  0.375                     
## PovStatBelw -0.511 -0.512  0.043  0.002              
## Ag:PvSttBlw -0.382 -0.585  0.010 -0.095  0.774       
## IPVstts1:SM  0.304  0.060 -0.660 -0.569 -0.066  0.018

plot(st)

plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2


plot(mm1)

plot of chunk unnamed-chunk-2

Trails B:A Regression Model 2 (with CES)


(mm2 = lmer(IPVandCognitionDataSet2$"TrailsB:A" ~ (Age + IPVstatus + Sex + PovStat + 
    CES1)^5 + (Age | HNDid) + (1 | subclass), data = IPVandCognitionDataSet2))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: IPVandCognitionDataSet2$"TrailsB:A" ~ (Age + IPVstatus + Sex +      PovStat + CES1)^5 + (Age | HNDid) + (1 | subclass) 
##    Data: IPVandCognitionDataSet2 
## REML criterion at convergence: 548.4 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 5.50e+00     
##           Age         2.14e-01 1.00
##  subclass (Intercept) 1.26e-05     
##  Residual             1.38e+00     
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## Fixed Effects:
##                              (Intercept)  
##                                   3.2408  
##                                      Age  
##                                   0.0141  
##                               IPVstatus1  
##                                  -2.0553  
##                                   SexMen  
##                                  -2.2487  
##                             PovStatBelow  
##                                   9.1611  
##                                    CES11  
##                                   1.8252  
##                           Age:IPVstatus1  
##                                  -0.1523  
##                               Age:SexMen  
##                                  -0.1348  
##                         Age:PovStatBelow  
##                                   0.7252  
##                                Age:CES11  
##                                  -0.0143  
##                        IPVstatus1:SexMen  
##                                  14.5632  
##                  IPVstatus1:PovStatBelow  
##                                 -10.7771  
##                         IPVstatus1:CES11  
##                                  -0.1922  
##                      SexMen:PovStatBelow  
##                                  -4.4751  
##                             SexMen:CES11  
##                                   4.2153  
##                       PovStatBelow:CES11  
##                                 -11.6195  
##                    Age:IPVstatus1:SexMen  
##                                   0.2730  
##              Age:IPVstatus1:PovStatBelow  
##                                  -0.7863  
##                     Age:IPVstatus1:CES11  
##                                   0.2068  
##                  Age:SexMen:PovStatBelow  
##                                  -0.4190  
##                         Age:SexMen:CES11  
##                                   0.4527  
##                   Age:PovStatBelow:CES11  
##                                  -0.7123  
##           IPVstatus1:SexMen:PovStatBelow  
##                                   0.6187  
##                  IPVstatus1:SexMen:CES11  
##                                 -12.1825  
##            IPVstatus1:PovStatBelow:CES11  
##                                  12.5917  
##                SexMen:PovStatBelow:CES11  
##                                   6.3200  
##       Age:IPVstatus1:SexMen:PovStatBelow  
##                                   0.7555  
##              Age:IPVstatus1:SexMen:CES11  
##                                  -0.7671  
##        Age:IPVstatus1:PovStatBelow:CES11  
##                                   0.7446  
##            Age:SexMen:PovStatBelow:CES11  
##                                   0.4201  
##     IPVstatus1:SexMen:PovStatBelow:CES11  
##                                  -5.1822  
## Age:IPVstatus1:SexMen:PovStatBelow:CES11  
##                                  -0.1099

(st = step(mm2))
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Random term (Age | HNDid) was eliminated because of having correlation +-1 or NaN
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Random term (1 | subclass) was eliminated because of standard deviation being equal to 0
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Random term (Age + 0 | HNDid) was eliminated because of standard deviation being equal to 0
## 
## Random effects:
##             Chi.sq Chi.DF elim.num p.value
## (1 | HNDid)  68.59      1     kept < 1e-07
## 
## Fixed effects:
##                                 Sum Sq Mean Sq NumDF  DenDF F.value
## Age:IPVstatus:Sex:PovStat:CES1  0.0019  0.0019     1  61.41  0.0008
## IPVstatus:Sex:PovStat:CES1      0.6218  0.6218     1  71.66  0.2722
## Age:Sex:PovStat:CES1            1.2502  1.2502     1  70.38  0.5489
## Sex:PovStat:CES1                0.3918  0.3918     1  59.24  0.1236
## Age:IPVstatus:PovStat:CES1      4.1623  4.1623     1  68.65  1.7443
## IPVstatus:PovStat:CES1          0.2163  0.2163     1  59.59  0.3298
## Age:IPVstatus:Sex:CES1          3.7006  3.7006     1  90.38  1.3498
## Age:IPVstatus:CES1              1.7794  1.7794     1  89.60  0.6619
## IPVstatus:Sex:CES1              2.1018  2.1018     1  53.37  0.7526
## IPVstatus:CES1                  1.9566  1.9566     1  52.01  0.8689
## Age:IPVstatus:Sex:PovStat       5.6565  5.6565     1  88.19  2.7401
## Age:Sex:PovStat                 2.0509  2.0509     1  84.48  0.0364
## Age:IPVstatus:Sex               0.0143  0.0143     1  93.96  0.2293
## Age:IPVstatus:PovStat           0.0488  0.0488     1  96.65  0.3286
## IPVstatus:Sex:PovStat           2.2915  2.2915     1  54.97  0.8698
## Sex:PovStat                     0.0940  0.0940     1  58.36  0.2194
## IPVstatus:PovStat               3.5181  3.5181     1  55.35  0.5308
## Age:IPVstatus                   1.6572  1.6572     1 102.92  2.4570
## Age:Sex:CES1                    6.9881  6.9881     1  97.20  2.7627
## Sex:CES1                        0.0856  0.0856     1  55.60  0.1405
## Age:Sex                         0.0940  0.0940     1 103.92  0.1165
## Age:PovStat:CES1                7.5027  7.5027     1 112.57  2.6625
## Age:CES1                        0.2429  0.2429     1 111.49  0.1554
## PovStat:CES1                    3.9144  3.9144     1  54.81  3.0325
## CES1                            0.6298  0.6298     1  55.72  0.0029
## Age                             5.4731  5.4731     1 116.69  3.6119
## IPVstatus                       1.3228  1.3228     1  56.25  1.5766
## Sex                             4.2082  4.2082     1  57.40  3.9280
## PovStat                         0.1299  0.1299     1  78.16  1.4353
## Age:PovStat                    16.2250 16.2250     1 116.30  6.5051
## IPVstatus:Sex                  17.3115 17.3115     1  56.24  8.1093
##                                elim.num Pr(>F)
## Age:IPVstatus:Sex:PovStat:CES1        1 0.9774
## IPVstatus:Sex:PovStat:CES1            2 0.6034
## Age:Sex:PovStat:CES1                  3 0.4612
## Sex:PovStat:CES1                      4 0.7264
## Age:IPVstatus:PovStat:CES1            5 0.1910
## IPVstatus:PovStat:CES1                6 0.5680
## Age:IPVstatus:Sex:CES1                7 0.2484
## Age:IPVstatus:CES1                    8 0.4180
## IPVstatus:Sex:CES1                    9 0.3895
## IPVstatus:CES1                       10 0.3556
## Age:IPVstatus:Sex:PovStat            11 0.1014
## Age:Sex:PovStat                      12 0.8491
## Age:IPVstatus:Sex                    13 0.6332
## Age:IPVstatus:PovStat                14 0.5678
## IPVstatus:Sex:PovStat                15 0.3551
## Sex:PovStat                          16 0.6412
## IPVstatus:PovStat                    17 0.4694
## Age:IPVstatus                        18 0.1201
## Age:Sex:CES1                         19 0.0997
## Sex:CES1                             20 0.7092
## Age:Sex                              21 0.7335
## Age:PovStat:CES1                     22 0.1055
## Age:CES1                             23 0.6942
## PovStat:CES1                         24 0.0872
## CES1                                 25 0.9573
## Age                                kept 0.0598
## IPVstatus                          kept 0.2144
## Sex                                kept 0.0523
## PovStat                            kept 0.2345
## Age:PovStat                        kept 0.0121
## IPVstatus:Sex                      kept 0.0061
## 
## Least squares means:
##                        IPVstatus  Sex PovStat Estimate Standard Error   DF
## IPVstatus  0                 1.0   NA      NA    3.423          0.620 58.5
## IPVstatus  1                 2.0   NA      NA    4.689          0.845 57.0
## Sex  Women                    NA  2.0      NA    3.045          0.707 56.3
## Sex  Men                      NA  1.0      NA    5.067          0.782 59.6
## PovStat  Above                NA   NA     1.0    4.215          0.608 57.2
## PovStat  Below                NA   NA     2.0    3.897          0.873 59.5
## IPVstatus:Sex  0 Women       1.0  2.0      NA    3.854          0.820 56.5
## IPVstatus:Sex  1 Women       2.0  2.0      NA    2.236          1.109 56.2
## IPVstatus:Sex  0 Men         1.0  1.0      NA    2.992          0.880 59.0
## IPVstatus:Sex  1 Men         2.0  1.0      NA    7.142          1.259 57.4
##                        t-value Lower CI Upper CI p-value
## IPVstatus  0              5.52   2.1814     4.67  <2e-16
## IPVstatus  1              5.55   2.9972     6.38  <2e-16
## Sex  Women                4.31   1.6291     4.46  0.0001
## Sex  Men                  6.48   3.5025     6.63  <2e-16
## PovStat  Above            6.93   2.9965     5.43  <2e-16
## PovStat  Below            4.47   2.1512     5.64  <2e-16
## IPVstatus:Sex  0 Women    4.70   2.2111     5.50  <2e-16
## IPVstatus:Sex  1 Women    2.02   0.0133     4.46  0.0487
## IPVstatus:Sex  0 Men      3.40   1.2325     4.75  0.0012
## IPVstatus:Sex  1 Men      5.67   4.6201     9.66  <2e-16
## 
##  Differences of LSMEANS:
##                                 Estimate Standard Error   DF t-value
## IPVstatus 0-1                       -1.3          1.008 56.2   -1.26
## Sex Women-Men                       -2.0          1.020 57.4   -1.98
## PovStat Above-Below                  0.3          1.040 58.7    0.31
## IPVstatus:Sex  0 Women- 1 Women      1.6          1.345 56.4    1.20
## IPVstatus:Sex  0 Women- 0 Men        0.9          1.163 57.0    0.74
## IPVstatus:Sex  0 Women- 1 Men       -3.3          1.490 56.6   -2.21
## IPVstatus:Sex  1 Women- 0 Men       -0.8          1.375 57.1   -0.55
## IPVstatus:Sex  1 Women- 1 Men       -4.9          1.667 56.7   -2.94
## IPVstatus:Sex  0 Men- 1 Men         -4.1          1.508 56.2   -2.75
##                                 Lower CI Upper CI p-value
## IPVstatus 0-1                      -3.28   0.7532   0.214
## Sex Women-Men                      -4.06   0.0207   0.052
## PovStat Above-Below                -1.76   2.3990   0.761
## IPVstatus:Sex  0 Women- 1 Women    -1.08   4.3129   0.234
## IPVstatus:Sex  0 Women- 0 Men      -1.47   3.1911   0.462
## IPVstatus:Sex  0 Women- 1 Men      -6.27  -0.3028   0.032
## IPVstatus:Sex  1 Women- 0 Men      -3.51   1.9976   0.584
## IPVstatus:Sex  1 Women- 1 Men      -8.25  -1.5668   0.005
## IPVstatus:Sex  0 Men- 1 Men        -7.17  -1.1294   0.008
## 
## Final model:
## lme4::lmer(formula = IPVandCognitionDataSet2$"TrailsB:A" ~ Age + 
##     IPVstatus + Sex + PovStat + (1 | HNDid) + Age:PovStat + IPVstatus:Sex, 
##     data = IPVandCognitionDataSet2, REML = reml, contrasts = l)

Re-run the suggested final Model 2

(mm2 = lmer(IPVandCognitionDataSet2$"TrailsB:A" ~ Age + IPVstatus + Sex + PovStat + 
    (Age | HNDid) + (1 | subclass) + Age:PovStat + IPVstatus:Sex, data = IPVandCognitionDataSet2))
## Warning: number of observations <= rank(Z); variance-covariance matrix
## will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: IPVandCognitionDataSet2$"TrailsB:A" ~ Age + IPVstatus + Sex +      PovStat + (Age | HNDid) + (1 | subclass) + Age:PovStat +      IPVstatus:Sex 
##    Data: IPVandCognitionDataSet2 
## REML criterion at convergence: 606.6 
## Random effects:
##  Groups   Name        Std.Dev. Corr
##  HNDid    (Intercept) 4.88e+00     
##           Age         1.71e-01 0.95
##  subclass (Intercept) 1.10e-06     
##  Residual             1.42e+00     
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## Fixed Effects:
##       (Intercept)                Age         IPVstatus1  
##            3.6907            -0.0347            -1.3308  
##            SexMen       PovStatBelow   Age:PovStatBelow  
##           -1.0897             1.8562             0.2881  
## IPVstatus1:SexMen  
##            6.5609

summary(mm2)
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Warning: number of observations <= rank(Z); variance-covariance matrix will be unidentifiable
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: IPVandCognitionDataSet2$"TrailsB:A" ~ Age + IPVstatus + Sex +      PovStat + (Age | HNDid) + (1 | subclass) + Age:PovStat +      IPVstatus:Sex 
##    Data: IPVandCognitionDataSet2 
## 
## REML criterion at convergence: 606.6 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  HNDid    (Intercept) 2.39e+01 4.88e+00     
##           Age         2.94e-02 1.71e-01 0.95
##  subclass (Intercept) 1.22e-12 1.10e-06     
##  Residual             2.02e+00 1.42e+00     
## Number of obs: 126, groups: HNDid, 63; subclass, 21
## 
## Fixed effects:
##                   Estimate Std. Error      df t value Pr(>|t|)
## (Intercept)         3.6907     1.1101 53.9000    3.32   0.0016
## Age                -0.0347     0.0608 48.2000   -0.57   0.5711
## IPVstatus1         -1.3308     1.2244 49.8000   -1.09   0.2823
## SexMen             -1.0897     1.0537 46.0000   -1.03   0.3065
## PovStatBelow        1.8562     1.5362 24.7000    1.21   0.2384
## Age:PovStatBelow    0.2881     0.1033 36.9000    2.79   0.0083
## IPVstatus1:SexMen   6.5609     1.8723 47.8000    3.50   0.0010
## 
## Correlation of Fixed Effects:
##             (Intr) Age    IPVst1 SexMen PvSttB Ag:PSB
## Age          0.739                                   
## IPVstatus1  -0.423 -0.089                            
## SexMen      -0.457 -0.031  0.375                     
## PovStatBelw -0.511 -0.512  0.043  0.002              
## Ag:PvSttBlw -0.382 -0.585  0.010 -0.095  0.774       
## IPVstts1:SM  0.304  0.060 -0.660 -0.569 -0.066  0.018

plot(st)

plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4 plot of chunk unnamed-chunk-4


plot(mm2)

plot of chunk unnamed-chunk-4