2^16
## [1] 65536
abs(-65)
SquareRoot9 = sqrt(9)
SquareRoot9
## [1] 3
HoursYear <- 365 * 24
HoursYear
## [1] 8760
ls()
## [1] "HoursYear" "SquareRoot9"
c(2, 3, 5, 8, 13)
## [1] 2 3 5 8 13
Country = c("Brazil", "China", "India", "Switzerland", "USA")
LifeExpectancy = c(74, 76, 65, 83, 79)
Country[1]
## [1] "Brazil"
LifeExpectancy[3]
## [1] 65
Sequence = seq(1, 20, 2)
Sequence
## [1] 1 3 5 7 9 11 13 15 17 19
Data = data.frame(Country, LifeExpectancy)
Data
## Country LifeExpectancy
## 1 Brazil 74
## 2 China 76
## 3 India 65
## 4 Switzerland 83
## 5 USA 79
Population = c(199000, 1390000, 1240000, 7997, 318000)
Data2 = cbind(Data, Population)
Data2
## Country LifeExpectancy Population
## 1 Brazil 74 199000
## 2 China 76 1390000
## 3 India 65 1240000
## 4 Switzerland 83 7997
## 5 USA 79 318000
Country = c("Australia", "Greece")
LifeExpectancy = c(82, 81)
Population = c(23050, 11125)
NewData = data.frame(Country, LifeExpectancy, Population)
NewData
## Country LifeExpectancy Population
## 1 Australia 82 23050
## 2 Greece 81 11125
Data3 = rbind(Data2, NewData)
Data3
## Country LifeExpectancy Population
## 1 Brazil 74 199000
## 2 China 76 1390000
## 3 India 65 1240000
## 4 Switzerland 83 7997
## 5 USA 79 318000
## 6 Australia 82 23050
## 7 Greece 81 11125
setwd("~/Desktop/Manalytics/W1 intro R")
WHO = read.csv("WHO.csv")
str(WHO)
## 'data.frame': 194 obs. of 13 variables:
## $ Country : Factor w/ 194 levels "Afghanistan",..: 1 2 3 4 5 6 7 8 9 10 ...
## $ Region : Factor w/ 6 levels "Africa","Americas",..: 3 4 1 4 1 2 2 4 6 4 ...
## $ Population : int 29825 3162 38482 78 20821 89 41087 2969 23050 8464 ...
## $ Under15 : num 47.4 21.3 27.4 15.2 47.6 ...
## $ Over60 : num 3.82 14.93 7.17 22.86 3.84 ...
## $ FertilityRate : num 5.4 1.75 2.83 NA 6.1 2.12 2.2 1.74 1.89 1.44 ...
## $ LifeExpectancy : int 60 74 73 82 51 75 76 71 82 81 ...
## $ ChildMortality : num 98.5 16.7 20 3.2 163.5 ...
## $ CellularSubscribers : num 54.3 96.4 99 75.5 48.4 ...
## $ LiteracyRate : num NA NA NA NA 70.1 99 97.8 99.6 NA NA ...
## $ GNI : num 1140 8820 8310 NA 5230 ...
## $ PrimarySchoolEnrollmentMale : num NA NA 98.2 78.4 93.1 91.1 NA NA 96.9 NA ...
## $ PrimarySchoolEnrollmentFemale: num NA NA 96.4 79.4 78.2 84.5 NA NA 97.5 NA ...
summary(WHO[, 1:3])
## Country Region Population
## Afghanistan : 1 Africa :46 Min. : 1
## Albania : 1 Americas :35 1st Qu.: 1696
## Algeria : 1 Eastern Mediterranean:22 Median : 7790
## Andorra : 1 Europe :53 Mean : 36360
## Angola : 1 South-East Asia :11 3rd Qu.: 24535
## Antigua and Barbuda: 1 Western Pacific :27 Max. :1390000
## (Other) :188
head(WHO, 2)
## Country Region Population Under15 Over60
## 1 Afghanistan Eastern Mediterranean 29825 47.42 3.82
## 2 Albania Europe 3162 21.33 14.93
## FertilityRate LifeExpectancy ChildMortality CellularSubscribers
## 1 5.40 60 98.5 54.26
## 2 1.75 74 16.7 96.39
## LiteracyRate GNI PrimarySchoolEnrollmentMale
## 1 NA 1140 NA
## 2 NA 8820 NA
## PrimarySchoolEnrollmentFemale
## 1 NA
## 2 NA
WHO_Europe = subset(WHO, Region == "Europe")
write.csv(WHO_Europe, "WHO_Europe.csv")
rm(WHO_Europe)
mean(WHO$Under15)
## [1] 28.73
sd(WHO$Under15)
## [1] 10.53
summary(WHO$Under15)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 13.1 18.7 28.6 28.7 37.8 50.0
which.min(WHO$Under15)
## [1] 86
WHO$Country[86]
## [1] Japan
## 194 Levels: Afghanistan Albania Algeria Andorra ... Zimbabwe
WHO$Country[which.max(WHO$Under15)]
## [1] Niger
## 194 Levels: Afghanistan Albania Algeria Andorra ... Zimbabwe
head(sort(WHO$Under15), 4)
## [1] 13.12 13.17 13.28 13.53
tempdata = WHO[order(-WHO$Under15), ]
head(tempdata, 2)
## Country Region Population Under15 Over60 FertilityRate LifeExpectancy
## 124 Niger Africa 17157 49.99 4.26 7.58 56
## 181 Uganda Africa 36346 48.54 3.72 6.06 56
## ChildMortality CellularSubscribers LiteracyRate GNI
## 124 113.5 29.52 NA 720
## 181 68.9 48.38 73.2 1310
## PrimarySchoolEnrollmentMale PrimarySchoolEnrollmentFemale
## 124 64.2 52.0
## 181 89.7 92.3
rm(tempdata)
plot(WHO$GNI, WHO$FertilityRate)
Outliers = subset(WHO, GNI > 10000 & FertilityRate > 2.5)
nrow(Outliers)
## [1] 7
Outliers[c("Country", "GNI", "FertilityRate")]
## Country GNI FertilityRate
## 23 Botswana 14550 2.71
## 56 Equatorial Guinea 25620 5.04
## 63 Gabon 13740 4.18
## 83 Israel 27110 2.92
## 88 Kazakhstan 11250 2.52
## 131 Panama 14510 2.52
## 150 Saudi Arabia 24700 2.76
hist(WHO$CellularSubscribers)
boxplot(WHO$LifeExpectancy ~ WHO$Region, xlab = "Region", ylab = "Life Expectancy",
main = "Life Expectancy of Countries by Region")
table(WHO$Region)
##
## Africa Americas Eastern Mediterranean
## 46 35 22
## Europe South-East Asia Western Pacific
## 53 11 27
tapply(WHO$Over60, WHO$Region, mean)
## Africa Americas Eastern Mediterranean
## 5.221 10.944 5.620
## Europe South-East Asia Western Pacific
## 19.775 8.769 10.163
tapply(WHO$LiteracyRate, WHO$Region, min)
## Africa Americas Eastern Mediterranean
## NA NA NA
## Europe South-East Asia Western Pacific
## NA NA NA
tapply(WHO$LiteracyRate, WHO$Region, min, na.rm = TRUE)
## Africa Americas Eastern Mediterranean
## 31.1 75.2 63.9
## Europe South-East Asia Western Pacific
## 95.2 56.8 60.6