Impact of Severe Weather Events on Public Health and Economy in the United States

Synopsis

This report present the analisis on the impact of different weather events on public health and economy according to the storm database from the U.S. National Oceanic and Atmospheric Administration’s (NOAA) from 1950 - 2011. A key concern was base on many severe events in which the result can be in fatalities, injuries, and property damage, and preventing.

Configurations and Libraries

echo = TRUE  # Allow code to always be displayed
options(scipen = 1)  # Turn off scientific notation.
library(ggplot2)
library(plyr)
require(gridExtra)
## Loading required package: gridExtra

Process the Data

First, load the data and read .csv file.

StormData <- read.csv("repdata_data_StormData.csv", sep = ",")
dim(StormData)
## [1] 902297     37
head(StormData)
##   STATE__           BGN_DATE BGN_TIME TIME_ZONE COUNTY COUNTYNAME STATE
## 1       1  4/18/1950 0:00:00     0130       CST     97     MOBILE    AL
## 2       1  4/18/1950 0:00:00     0145       CST      3    BALDWIN    AL
## 3       1  2/20/1951 0:00:00     1600       CST     57    FAYETTE    AL
## 4       1   6/8/1951 0:00:00     0900       CST     89    MADISON    AL
## 5       1 11/15/1951 0:00:00     1500       CST     43    CULLMAN    AL
## 6       1 11/15/1951 0:00:00     2000       CST     77 LAUDERDALE    AL
##    EVTYPE BGN_RANGE BGN_AZI BGN_LOCATI END_DATE END_TIME COUNTY_END
## 1 TORNADO         0                                               0
## 2 TORNADO         0                                               0
## 3 TORNADO         0                                               0
## 4 TORNADO         0                                               0
## 5 TORNADO         0                                               0
## 6 TORNADO         0                                               0
##   COUNTYENDN END_RANGE END_AZI END_LOCATI LENGTH WIDTH F MAG FATALITIES
## 1         NA         0                      14.0   100 3   0          0
## 2         NA         0                       2.0   150 2   0          0
## 3         NA         0                       0.1   123 2   0          0
## 4         NA         0                       0.0   100 2   0          0
## 5         NA         0                       0.0   150 2   0          0
## 6         NA         0                       1.5   177 2   0          0
##   INJURIES PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP WFO STATEOFFIC ZONENAMES
## 1       15    25.0          K       0                                    
## 2        0     2.5          K       0                                    
## 3        2    25.0          K       0                                    
## 4        2     2.5          K       0                                    
## 5        2     2.5          K       0                                    
## 6        6     2.5          K       0                                    
##   LATITUDE LONGITUDE LATITUDE_E LONGITUDE_ REMARKS REFNUM
## 1     3040      8812       3051       8806              1
## 2     3042      8755          0          0              2
## 3     3340      8742          0          0              3
## 4     3458      8626          0          0              4
## 5     3412      8642          0          0              5
## 6     3450      8748          0          0              6
  1. Across the United States, which types of events (as indicated in the EVTYPE variable) are most harmful with respect to population health?

The result will be divided base on fatalities and injuries. First, sum of all the facilities caused by an specific event. Then, present data decreasing order and take the top 10.

Sum_Fatalities <- aggregate(StormData$FATALITIES, by = list(StormData$EVTYPE), "sum")
names(Sum_Fatalities) <- c("Event", "Fatalities")
Sum_Fatalities <- Sum_Fatalities[order(-Sum_Fatalities$Fatalities), ][1:10, ]
Sum_Fatalities
##              Event Fatalities
## 834        TORNADO       5633
## 130 EXCESSIVE HEAT       1903
## 153    FLASH FLOOD        978
## 275           HEAT        937
## 464      LIGHTNING        816
## 856      TSTM WIND        504
## 170          FLOOD        470
## 585    RIP CURRENT        368
## 359      HIGH WIND        248
## 19       AVALANCHE        224

Continue the step base on injuries

Sum_Injuries <- aggregate(StormData$INJURIES, by = list(StormData$EVTYPE), "sum")
names(Sum_Injuries) <- c("Event", "Injuries")
Sum_Injuries <- Sum_Injuries[order(-Sum_Injuries$Injuries), ][1:10, ]
Sum_Injuries
##                 Event Injuries
## 834           TORNADO    91346
## 856         TSTM WIND     6957
## 170             FLOOD     6789
## 130    EXCESSIVE HEAT     6525
## 464         LIGHTNING     5230
## 275              HEAT     2100
## 427         ICE STORM     1975
## 153       FLASH FLOOD     1777
## 760 THUNDERSTORM WIND     1488
## 244              HAIL     1361

Then, Plot both the data

Health impact of weather events

par(mfrow = c(1, 2), mar = c(12, 5, 3, 2), mgp = c(3, 1, 0), cex = 0.8, las = 3)
barplot(Sum_Fatalities$Fatalities, names.arg = Sum_Fatalities$Event, col = 'green',
        main = 'Top 10 Weather Events for Fatalities', ylab = 'Number of Fatalities')
barplot(Sum_Injuries$Injuries, names.arg = Sum_Injuries$Event, col = 'yellow',
        main = 'Top 10 Weather Events for Injuries', ylab = 'Number of Injuries')

  1. Across the United States, which types of events have the greatest economic consequences?

Economic impact of weather events

The following plot shows the most severe weather event have the gratest economic consequences since 1950s.

library(ggplot2)
library(gridExtra)
# Set the levels in order
Prop1 <- ggplot(data=prop_dmg_events,
             aes(x=reorder(EVTYPE, prop_dmg), y=log10(prop_dmg), fill=prop_dmg )) +
    geom_bar(stat="identity") +
    coord_flip() +
    xlab("Event type") +
    ylab("Property damage in dollars (log-scale)") +
    theme(legend.position="none")

Crop1 <- ggplot(data=crop_dmg_events,
             aes(x=reorder(EVTYPE, crop_dmg), y=crop_dmg, fill=crop_dmg)) +
    geom_bar(stat="identity") +
    coord_flip() + 
    xlab("Event type") +
    ylab("Crop damage in dollars") + 
    theme(legend.position="none")

grid.arrange(Prop1, Crop1)

Interm of crop damage, drouht is the most severe weather event. This caused of more than 10 billion dollars damage for the last half century.