Pre-processing Data

## [1] 9
## 
##  Pearson's product-moment correlation
## 
## data:  mf.stop$Stop.male and mf.stop$Stop.female
## t = 4.7099, df = 97, p-value = 8.261e-06
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2558004 0.5794841
## sample estimates:
##       cor 
## 0.4314261
## Warning in ICC::ICCest(ID.relation, value, data = mf.stop.l): 'x' has been
## coerced to a factor
## $ICC
## [1] 0.4183118
## 
## $LowerCI
## [1] 0.2422021
## 
## $UpperCI
## [1] 0.5678736
## 
## $N
## [1] 99
## 
## $k
## [1] 2
## 
## $varw
## [1] 8478.709
## 
## $vara
## [1] 6097.329

Obtain ICCs for tolerance time and other survey data

ICC::ICCest(ID.relation,value, data=mf.stop.l) #calculate the ICC Stop time
## Warning in ICC::ICCest(ID.relation, value, data = mf.stop.l): 'x' has been
## coerced to a factor
## $ICC
## [1] 0.4183118
## 
## $LowerCI
## [1] 0.2422021
## 
## $UpperCI
## [1] 0.5678736
## 
## $N
## [1] 99
## 
## $k
## [1] 2
## 
## $varw
## [1] 8478.709
## 
## $vara
## [1] 6097.329
ICC::ICCest(ID.relation,SelfEsteem, data=mf.relate.l.2) ##self-esteem
## Warning in ICC::ICCest(ID.relation, SelfEsteem, data = mf.relate.l.2): 'x'
## has been coerced to a factor
## $ICC
## [1] 0.2738551
## 
## $LowerCI
## [1] 0.0597044
## 
## $UpperCI
## [1] 0.4641515
## 
## $N
## [1] 80
## 
## $k
## [1] 2
## 
## $varw
## [1] 16.3
## 
## $vara
## [1] 6.14731
ICC::ICCest(ID.relation,CTS, data=mf.relate.l.2) ##current thoughts
## Warning in ICC::ICCest(ID.relation, CTS, data = mf.relate.l.2): 'x' has
## been coerced to a factor
## $ICC
## [1] 0.1036855
## 
## $LowerCI
## [1] -0.1166582
## 
## $UpperCI
## [1] 0.314582
## 
## $N
## [1] 80
## 
## $k
## [1] 2
## 
## $varw
## [1] 133.0625
## 
## $vara
## [1] 15.39264
ICC::ICCest(ID.relation,TT, data=mf.relate.l.2) ##total Trust
## Warning in ICC::ICCest(ID.relation, TT, data = mf.relate.l.2): 'x' has been
## coerced to a factor
## $ICC
## [1] 0.3330225
## 
## $LowerCI
## [1] 0.1243261
## 
## $UpperCI
## [1] 0.5137323
## 
## $N
## [1] 80
## 
## $k
## [1] 2
## 
## $varw
## [1] 33.275
## 
## $vara
## [1] 16.61424

Plots for each relationship (Key below)

Model Fit

#Basic Multilevel model
library(nlme)
CP.long$Pain.obsv <- as.numeric(CP.long$Pain.obsv)
## Warning: NAs introduced by coercion
CP.long <- na.omit(CP.long)
#CP.long <- CP.long[!is.na(CP.long$Pain.exp),] #remove NAs from only the predictor variable

####------this model is if I include time 1 and zero as controls
#model1 <- lme(fixed=Pain.exp~Pain.obsv + t.0+t.1, random=~1 + Pain.obsv | as.factor(ID.relation), data=CP.long)
#summary(model1)

#subset the data so that you remove the 0 and 30 seconds
CP.long.sub <- CP.long[!CP.long$time.e %in% c("EP.0.x","EP.30.x"),]
CP.long.sub$Pain.exp <- CP.long.sub$Pain.exp-mean(CP.long.sub$Pain.exp)
CP.long.sub$Pain.obsv <- CP.long.sub$Pain.obsv-mean(CP.long.sub$Pain.obsv)
model1 <- lme(fixed=Pain.exp~Pain.obsv, random=~1 + Pain.obsv | as.factor(ID.relation), data=CP.long.sub)
summary(model1)
## Linear mixed-effects model fit by REML
##  Data: CP.long.sub 
##        AIC     BIC    logLik
##   1050.727 1072.91 -519.3636
## 
## Random effects:
##  Formula: ~1 + Pain.obsv | as.factor(ID.relation)
##  Structure: General positive-definite, Log-Cholesky parametrization
##             StdDev    Corr  
## (Intercept) 2.0103449 (Intr)
## Pain.obsv   0.3593478 0.365 
## Residual    0.9549050       
## 
## Fixed effects: Pain.exp ~ Pain.obsv 
##                Value  Std.Error  DF  t-value p-value
## (Intercept) 0.456664 0.27564356 237 1.656719  0.0989
## Pain.obsv   0.300801 0.07202603 237 4.176282  0.0000
##  Correlation: 
##           (Intr)
## Pain.obsv 0.221 
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -2.40763837 -0.56361266  0.05026319  0.54866684  2.63257238 
## 
## Number of Observations: 300
## Number of Groups: 62
model2 <- lme(fixed=Pain.exp~1, random=~1 | as.factor(ID.relation), data=CP.long.sub)
summary(model2)
## Linear mixed-effects model fit by REML
##  Data: CP.long.sub 
##        AIC      BIC    logLik
##   1089.396 1100.497 -541.6979
## 
## Random effects:
##  Formula: ~1 | as.factor(ID.relation)
##         (Intercept) Residual
## StdDev:    1.980183  1.13424
## 
## Fixed effects: Pain.exp ~ 1 
##                 Value Std.Error  DF  t-value p-value
## (Intercept) 0.5406304 0.2661333 238 2.031427  0.0433
## 
## Standardized Within-Group Residuals:
##        Min         Q1        Med         Q3        Max 
## -2.2758970 -0.6278236  0.1335636  0.5718746  2.4381145 
## 
## Number of Observations: 300
## Number of Groups: 62
ICC.randomintercepts <- 1.98^2/(1.98^2+1.13^2)
ICC.randomintercepts
## [1] 0.7543147
CP.long.dif <- CP.long.sub
CP.long.dif$dif <- CP.long.dif$Pain.exp-CP.long.dif$Pain.obsv

model3 <- lme(fixed=dif~1, random=~1 | as.factor(ID.relation), data=CP.long.dif)
summary(model3)
## Linear mixed-effects model fit by REML
##  Data: CP.long.dif 
##        AIC      BIC    logLik
##   1245.473 1256.574 -619.7363
## 
## Random effects:
##  Formula: ~1 | as.factor(ID.relation)
##         (Intercept) Residual
## StdDev:    2.356141 1.500968
## 
## Fixed effects: dif ~ 1 
##                 Value Std.Error  DF  t-value p-value
## (Intercept) 0.4641934 0.3203022 238 1.449236  0.1486
## 
## Standardized Within-Group Residuals:
##         Min          Q1         Med          Q3         Max 
## -2.49096362 -0.60367782  0.06255887  0.53811237  3.50516662 
## 
## Number of Observations: 300
## Number of Groups: 62
ICC.randomintercepts.dif <- 2.35^2/(2.35^2+1.50^2)
ICC.randomintercepts.dif
## [1] 0.7105179
CP.long.dif$dif.abs <- abs(CP.long.dif$dif)

model4 <- lme(fixed=dif.abs~1, random=~1 | as.factor(ID.relation), data=CP.long.dif)
summary(model4)
## Linear mixed-effects model fit by REML
##  Data: CP.long.dif 
##        AIC      BIC    logLik
##   1050.412 1061.513 -522.2058
## 
## Random effects:
##  Formula: ~1 | as.factor(ID.relation)
##         (Intercept) Residual
## StdDev:    1.379574 1.131352
## 
## Fixed effects: dif.abs ~ 1 
##                Value Std.Error  DF  t-value p-value
## (Intercept) 2.156446  0.194289 238 11.09917       0
## 
## Standardized Within-Group Residuals:
##          Min           Q1          Med           Q3          Max 
## -2.159040543 -0.631213897  0.009164038  0.447891089  3.261622687 
## 
## Number of Observations: 300
## Number of Groups: 62
ICC.randomintercepts.dif.abs <- 1.38^2/(1.38^2+1.14^2)
ICC.randomintercepts.dif.abs
## [1] 0.594382

Plots of Partners during the task