PERMA ACOMPLISHMENT

setwd("/Users/levibrackman/Desktop/Adult_study")
data_pre <- read.csv("pre.csv")
data_post <- read.csv("post.csv")

table(data_pre$GROUP, dnn = "group")
## group
##  0  1 
## 35 32
data <- merge(data_pre, data_post, by = "ID", all = TRUE)

library(psych)
library(lattice)
# Only PERMA acomplishment questions
data$T1PERMA_ACOMP <- apply(data[, c("PERMA1.x", "PERMA6.x", "PERMA12.x")], 
    1, mean, na.rm = TRUE)
data$T2PERMA_ACOMP <- apply(data[, c("PERMA1.y", "PERMA6.y", "PERMA12.y")], 
    1, mean, na.rm = TRUE)

plot(data$T1PERMA_ACOMP, data$T2PERMA_ACOMP, ylab = "Pre", xlab = "Post", main = "Acomplishement")

plot of chunk unnamed-chunk-1

# pre test plots
bwplot(GROUP.x ~ T1PERMA_ACOMP, ylab = "GROUP", xlab = "PERMA_ACOMP", main = "Pre test", 
    data = data)

plot of chunk unnamed-chunk-1

# post test plots
bwplot(GROUP.x ~ T2PERMA_ACOMP, ylab = "Group", xlab = "PERMA", main = "Post test", 
    data = data)

plot of chunk unnamed-chunk-1

# Pre test
t.test(T1PERMA_ACOMP ~ GROUP.x, data = data)
## 
##  Welch Two Sample t-test
## 
## data:  T1PERMA_ACOMP by GROUP.x
## t = 1.155, df = 62.34, p-value = 0.2526
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.3313  1.2378
## sample estimates:
## mean in group 0 mean in group 1 
##           7.276           6.823
t.test(T2PERMA_ACOMP ~ GROUP.x, data = data)
## 
##  Welch Two Sample t-test
## 
## data:  T2PERMA_ACOMP by GROUP.x
## t = -0.5619, df = 44.99, p-value = 0.577
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.9348  0.5270
## sample estimates:
## mean in group 0 mean in group 1 
##           7.590           7.794
# Ancova, Model for PERMA acmplishment questions
PERMA_ACOMP_ANCOVA <- lm(T2PERMA_ACOMP ~ as.factor(GROUP.x) + T1PERMA_ACOMP, 
    data = data)
# check assumptions visually
plot(PERMA_ACOMP_ANCOVA)

plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1 plot of chunk unnamed-chunk-1

# Results show that number 16 is an outlier. This will be re-run withour 16
# to see if it changes the results.  see results
summary(PERMA_ACOMP_ANCOVA)
## 
## Call:
## lm(formula = T2PERMA_ACOMP ~ as.factor(GROUP.x) + T1PERMA_ACOMP, 
##     data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.928 -0.333  0.006  0.525  2.449 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            4.061      0.776    5.23  4.4e-06 ***
## as.factor(GROUP.x)1    0.239      0.307    0.78     0.44    
## T1PERMA_ACOMP          0.475      0.101    4.72  2.4e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.05 on 44 degrees of freedom
##   (22 observations deleted due to missingness)
## Multiple R-squared:  0.34,   Adjusted R-squared:  0.31 
## F-statistic: 11.3 on 2 and 44 DF,  p-value: 0.000106
# Results show that there is no significan increase based in sense of
# acomplishemnet due to the intervention

# Now running the same tests but without 16 which was an outlier
data$T1PERMA_ACOMP1 <- apply(data[, c("PERMA1.x", "PERMA6.x", "PERMA12.x")], 
    1, mean, na.rm = TRUE)
data$T2PERMA_ACOMP1 <- apply(data[, c("PERMA1.y", "PERMA6.y", "PERMA12.y")], 
    1, mean, na.rm = TRUE)

plot(data$T1PERMA_ACOMP1, data$T2PERMA_ACOMP1, ylab = "Pre", xlab = "Post", 
    main = "Acomplishement")

plot of chunk unnamed-chunk-2

# pre test plots
bwplot(GROUP.x ~ T1PERMA_ACOMP1, ylab = "GROUP", xlab = "PERMA_ACOMP", main = "Pre test", 
    data = data)

plot of chunk unnamed-chunk-2

# post test plots
bwplot(GROUP.x ~ T2PERMA_ACOMP1, ylab = "Group", xlab = "PERMA", main = "Post test", 
    data = data)

plot of chunk unnamed-chunk-2

# Pre test
t.test(T1PERMA_ACOMP1 ~ GROUP.x, data = data)
## 
##  Welch Two Sample t-test
## 
## data:  T1PERMA_ACOMP1 by GROUP.x
## t = 1.155, df = 62.34, p-value = 0.2526
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.3313  1.2378
## sample estimates:
## mean in group 0 mean in group 1 
##           7.276           6.823
t.test(T2PERMA_ACOMP1 ~ GROUP.x, data = data)
## 
##  Welch Two Sample t-test
## 
## data:  T2PERMA_ACOMP1 by GROUP.x
## t = -0.5619, df = 44.99, p-value = 0.577
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.9348  0.5270
## sample estimates:
## mean in group 0 mean in group 1 
##           7.590           7.794
# Ancova, Model for PERMA complishment without number 16
PERMA_ACOMP_ANCOVA1 <- lm(T2PERMA_ACOMP ~ as.factor(GROUP.x) + T1PERMA_ACOMP, 
    data = data, -16)
# check assumptions visually
plot(PERMA_ACOMP_ANCOVA1)

plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2 plot of chunk unnamed-chunk-2

# see results
summary(PERMA_ACOMP_ANCOVA1)
## 
## Call:
## lm(formula = T2PERMA_ACOMP ~ as.factor(GROUP.x) + T1PERMA_ACOMP, 
##     data = data, subset = -16)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.895 -0.323  0.082  0.515  1.677 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            3.215      0.781    4.11  0.00017 ***
## as.factor(GROUP.x)1    0.102      0.289    0.35  0.72585    
## T1PERMA_ACOMP          0.589      0.102    5.77  7.8e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.972 on 43 degrees of freedom
##   (22 observations deleted due to missingness)
## Multiple R-squared:  0.439,  Adjusted R-squared:  0.413 
## F-statistic: 16.9 on 2 and 43 DF,  p-value: 3.94e-06
# Results show that while there is a higer multiple R-squared there is a
# much higher p-value as well.