Data Preperation on April, 2nd 2014 - these are preliminary results with on 22 people in the intervention group reporting.
setwd("/Users/levibrackman/Desktop/Adult_study")
data_pre <- read.csv("pre.csv")
data_post <- read.csv("post.csv")
table(data_pre$GROUP, dnn = "group")
## group
## 0 1
## 35 32
data <- merge(data_pre, data_post, by = "ID", all = TRUE)
library(psych)
library(lattice)
# HAPPI leaving out the searching for purpose
data$T1HAPPI <- apply(data[, c("HAPPI1.x", "HAPPI2.x", "HAPPI3.x")], 1, mean,
na.rm = TRUE)
data$T2HAPPI <- apply(data[, c("HAPPI1.y", "HAPPI2.y", "HAPPI3.y")], 1, mean,
na.rm = TRUE)
plot(data$T1HAPPI, data$T2HAPPI, ylab = "Pre", xlab = "Post", main = "HAPPI")
# pre test plots
bwplot(GROUP.x ~ T1HAPPI, ylab = "GROUP", xlab = "HAPPI", main = "Pre test",
data = data)
# post test plots
bwplot(GROUP.x ~ T2HAPPI, ylab = "Group", xlab = "HAPPI", main = "Post test",
data = data)
# Pre test
t.test(T1HAPPI ~ GROUP.x, data = data)
##
## Welch Two Sample t-test
##
## data: T1HAPPI by GROUP.x
## t = -0.0444, df = 64.68, p-value = 0.9647
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.5884 0.5628
## sample estimates:
## mean in group 0 mean in group 1
## 5.248 5.260
t.test(T2HAPPI ~ GROUP.x, data = data)
##
## Welch Two Sample t-test
##
## data: T2HAPPI by GROUP.x
## t = -1.41, df = 42.83, p-value = 0.1657
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.9318 0.1650
## sample estimates:
## mean in group 0 mean in group 1
## 5.410 5.794
# Ancova, Model for HAPPI
HAPPI_ANCOVA <- lm(T2HAPPI ~ as.factor(GROUP.x) + T1HAPPI, data = data)
# check assumptions visually
plot(HAPPI_ANCOVA)
# see results
summary(HAPPI_ANCOVA)
##
## Call:
## lm(formula = T2HAPPI ~ as.factor(GROUP.x) + T1HAPPI, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.140 -0.303 -0.008 0.378 1.025
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.4401 0.3602 4.00 0.00024 ***
## as.factor(GROUP.x)1 0.4675 0.1446 3.23 0.00233 **
## T1HAPPI 0.7286 0.0637 11.44 9e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.492 on 44 degrees of freedom
## (22 observations deleted due to missingness)
## Multiple R-squared: 0.758, Adjusted R-squared: 0.747
## F-statistic: 69 on 2 and 44 DF, p-value: 2.74e-14
# Ancova, Model for HAPPI
HAPPI_ANCOVA1 <- lm(T2HAPPI ~ as.factor(GROUP.x) + T1HAPPI, data = data, -15)
# check assumptions visually
plot(HAPPI_ANCOVA1)
# see results
summary(HAPPI_ANCOVA1)
##
## Call:
## lm(formula = T2HAPPI ~ as.factor(GROUP.x) + T1HAPPI, data = data,
## subset = -15)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.069 -0.361 0.116 0.402 0.976
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.9003 0.3740 5.08 7.8e-06 ***
## as.factor(GROUP.x)1 0.4040 0.1366 2.96 0.005 **
## T1HAPPI 0.6543 0.0651 10.06 7.3e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.458 on 43 degrees of freedom
## (22 observations deleted due to missingness)
## Multiple R-squared: 0.708, Adjusted R-squared: 0.695
## F-statistic: 52.2 on 2 and 43 DF, p-value: 3.12e-12