Homework II

Refer to Real estate data set. Residential sales that occurred during the year 2002 were available from a city in the midwest of the US. Data on 522 arms-length transactions include sales price, style, finished square feet, number of bedrooms, pool, lot size, year built, air conditioning, and whether or not the lot in adjacent to a highway.

The city tax assessor was interested in predicting sales price based on the demographic variable information give above. Select a random sample of 320 observations to use in the model-building data set.

Read in the data and name the variables

real.est = read.table("E:/A 学习/1课程与书目/2014春/杨柳-高级应用数理统计/HW2 linear regression/RealEstate.txt", 
    header = F)

colnames(real.est) = c("id", "price", "area", "bedrooms", "bathrooms", 
    "aircon", "garage", "pool", "year", "quality", "style", "lot", 
    "highway")

o = ordered(real.est$quality)

real.est$quality = factor(o, levels = rev(levels(o)))

real.est$style = factor(real.est$style)

nrow(real.est)
## [1] 522

head(real.est, 10)
##    id  price area bedrooms bathrooms aircon garage pool year quality style   lot highway
## 1   1 360000 3032        4         4      1      2    0 1972       2     1 22221       0
## 2   2 340000 2058        4         2      1      2    0 1976       2     1 22912       0
## 3   3 250000 1780        4         3      1      2    0 1980       2     1 21345       0
## 4   4 205500 1638        4         2      1      2    0 1963       2     1 17342       0
## 5   5 275500 2196        4         3      1      2    0 1968       2     7 21786       0
## 6   6 248000 1966        4         3      1      5    1 1972       2     1 18902       0
## 7   7 229900 2216        3         2      1      2    0 1972       2     7 18639       0
## 8   8 150000 1597        2         1      1      1    0 1955       2     1 22112       0
## 9   9 195000 1622        3         2      1      2    0 1975       3     1 14321       0
## 10 10 160000 1976        3         3      0      1    0 1918       3     1 32358       0

Randomly select a training sample of 320 out of 522 in total

The rest of the data is therefore split into the validation dataset

set.seed(1024)

indices = sample(nrow(real.est), 320)

training = real.est[indices, ]
nrow(training)
## [1] 320

validation = real.est[-indices, ]
nrow(validation)
## [1] 202

(i) Do any series multicollinearity problem exist here? Develop a best subset model for predicting sales price. Justify your choice of model.


# Compute the correlation matrix (excluding the factor variables 'id', 'quality' and 'style') and kappa to test multicollinearity

corr = cor(training[c(2:9, 12, 13)])
corr
##              price     area bedrooms bathrooms   aircon   garage     pool      year      lot   highway
## price      1.00000  0.80174  0.38361   0.64695  0.30115  0.55668  0.09867  0.579701  0.20131 -0.060195
## area       0.80174  1.00000  0.57249   0.73351  0.25785  0.49875  0.12362  0.434262  0.14992 -0.064564
## bedrooms   0.38361  0.57249  1.00000   0.58541  0.18748  0.31860  0.06488  0.262644  0.12980 -0.061422
## bathrooms  0.64695  0.73351  0.58541   1.00000  0.30711  0.43929  0.13995  0.490326  0.13419 -0.065155
## aircon     0.30115  0.25785  0.18748   0.30711  1.00000  0.28843  0.08978  0.417222 -0.11675 -0.126464
## garage     0.55668  0.49875  0.31860   0.43929  0.28843  1.00000  0.04161  0.465156  0.14422 -0.019479
## pool       0.09867  0.12362  0.06488   0.13995  0.08978  0.04161  1.00000  0.056705 -0.05613 -0.038468
## year       0.57970  0.43426  0.26264   0.49033  0.41722  0.46516  0.05670  1.000000 -0.08288  0.004762
## lot        0.20131  0.14992  0.12980   0.13419 -0.11675  0.14422 -0.05613 -0.082880  1.00000  0.191096
## highway   -0.06020 -0.06456 -0.06142  -0.06515 -0.12646 -0.01948 -0.03847  0.004762  0.19110  1.000000

kappa(corr, exact = T)
## [1] 28.18

# Because kappa << 1000, no multicollinearity detected

# Do OLS regression

lm.sol = lm(price ~ . - id, data = training)
summary(lm.sol)
## 
## Call:
## lm(formula = price ~ . - id, data = training)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -194940  -28433   -1988   27309  262060 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -3.05e+06   5.08e+05   -6.00  5.6e-09 ***
## area         9.90e+01   1.04e+01    9.49  < 2e-16 ***
## bedrooms    -8.05e+03   4.42e+03   -1.82  0.06953 .  
## bathrooms    9.62e+03   5.41e+03    1.78  0.07603 .  
## aircon       5.39e+03   1.11e+04    0.49  0.62638    
## garage       1.04e+04   7.13e+03    1.46  0.14640    
## pool         9.82e+03   1.35e+04    0.73  0.46658    
## year         1.57e+03   2.61e+02    6.02  4.9e-09 ***
## quality.L    1.06e+05   1.36e+04    7.79  1.1e-13 ***
## quality.Q    4.78e+04   6.80e+03    7.03  1.4e-11 ***
## style2      -2.76e+04   1.26e+04   -2.18  0.02983 *  
## style3      -1.38e+04   1.23e+04   -1.12  0.26360    
## style4      -5.35e+03   3.11e+04   -0.17  0.86341    
## style5      -3.31e+04   2.04e+04   -1.62  0.10531    
## style6      -7.99e+03   1.95e+04   -0.41  0.68275    
## style7      -3.09e+04   1.15e+04   -2.69  0.00757 ** 
## style9      -9.33e+04   6.17e+04   -1.51  0.13130    
## lot          1.24e+00   3.24e-01    3.84  0.00015 ***
## highway     -3.78e+04   2.59e+04   -1.46  0.14574    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 60400 on 301 degrees of freedom
## Multiple R-squared:  0.82,   Adjusted R-squared:  0.809 
## F-statistic: 76.3 on 18 and 301 DF,  p-value: <2e-16

# The model in whole is very significant, whereas some of the variables are not

# Do stepwise regression to testify the selection

# We can see the variables 'aircon', 'pool', 'style' and 'highway' already dropped

lm.step = step(lm.sol)
## Start:  AIC=7064
## price ~ (id + area + bedrooms + bathrooms + aircon + garage + 
##     pool + year + quality + style + lot + highway) - id
## 
##             Df Sum of Sq      RSS  AIC
## - aircon     1  8.65e+08 1.10e+12 7062
## - pool       1  1.94e+09 1.10e+12 7062
## - style      7  4.52e+10 1.14e+12 7063
## <none>                   1.10e+12 7064
## - garage     1  7.73e+09 1.10e+12 7064
## - highway    1  7.75e+09 1.10e+12 7064
## - bathrooms  1  1.15e+10 1.11e+12 7065
## - bedrooms   1  1.21e+10 1.11e+12 7065
## - lot        1  5.36e+10 1.15e+12 7077
## - year       1  1.32e+11 1.23e+12 7098
## - area       1  3.28e+11 1.42e+12 7145
## - quality    2  3.39e+11 1.44e+12 7146
## 
## Step:  AIC=7062
## price ~ area + bedrooms + bathrooms + garage + pool + year + 
##     quality + style + lot + highway
## 
##             Df Sum of Sq      RSS  AIC
## - pool       1  2.05e+09 1.10e+12 7060
## - style      7  4.54e+10 1.14e+12 7061
## <none>                   1.10e+12 7062
## - garage     1  8.20e+09 1.11e+12 7062
## - highway    1  8.52e+09 1.11e+12 7062
## - bathrooms  1  1.15e+10 1.11e+12 7063
## - bedrooms   1  1.20e+10 1.11e+12 7063
## - lot        1  5.28e+10 1.15e+12 7075
## - year       1  1.40e+11 1.24e+12 7098
## - area       1  3.28e+11 1.43e+12 7143
## - quality    2  3.39e+11 1.44e+12 7144
## 
## Step:  AIC=7060
## price ~ area + bedrooms + bathrooms + garage + year + quality + 
##     style + lot + highway
## 
##             Df Sum of Sq      RSS  AIC
## - style      7  4.44e+10 1.14e+12 7059
## <none>                   1.10e+12 7060
## - garage     1  8.10e+09 1.11e+12 7061
## - highway    1  8.66e+09 1.11e+12 7061
## - bathrooms  1  1.22e+10 1.11e+12 7062
## - bedrooms   1  1.25e+10 1.11e+12 7062
## - lot        1  5.17e+10 1.15e+12 7073
## - year       1  1.39e+11 1.24e+12 7097
## - quality    2  3.37e+11 1.44e+12 7142
## - area       1  3.36e+11 1.44e+12 7144
## 
## Step:  AIC=7059
## price ~ area + bedrooms + bathrooms + garage + year + quality + 
##     lot + highway
## 
##             Df Sum of Sq      RSS  AIC
## - highway    1  6.63e+09 1.15e+12 7059
## <none>                   1.14e+12 7059
## - bathrooms  1  8.13e+09 1.15e+12 7059
## - garage     1  1.19e+10 1.16e+12 7060
## - bedrooms   1  2.07e+10 1.16e+12 7063
## - lot        1  6.57e+10 1.21e+12 7075
## - year       1  1.42e+11 1.29e+12 7094
## - quality    2  3.96e+11 1.54e+12 7150
## - area       1  4.15e+11 1.56e+12 7156
## 
## Step:  AIC=7059
## price ~ area + bedrooms + bathrooms + garage + year + quality + 
##     lot
## 
##             Df Sum of Sq      RSS  AIC
## <none>                   1.15e+12 7059
## - bathrooms  1  8.90e+09 1.16e+12 7059
## - garage     1  1.22e+10 1.16e+12 7060
## - bedrooms   1  1.99e+10 1.17e+12 7062
## - lot        1  5.97e+10 1.21e+12 7073
## - year       1  1.37e+11 1.29e+12 7093
## - quality    2  4.03e+11 1.55e+12 7151
## - area       1  4.16e+11 1.57e+12 7156

summary(lm.step)
## 
## Call:
## lm(formula = price ~ area + bedrooms + bathrooms + garage + year + 
##     quality + lot, data = training)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -191517  -32782   -1566   24054  287033 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -2.94e+06   4.90e+05   -6.01  5.1e-09 ***
## area         9.35e+01   8.82e+00   10.61  < 2e-16 ***
## bedrooms    -1.01e+04   4.34e+03   -2.32    0.021 *  
## bathrooms    8.29e+03   5.35e+03    1.55    0.122    
## garage       1.29e+04   7.11e+03    1.82    0.070 .  
## year         1.52e+03   2.50e+02    6.09  3.3e-09 ***
## quality.L    1.06e+05   1.28e+04    8.25  4.5e-15 ***
## quality.Q    5.15e+04   6.28e+03    8.21  5.9e-15 ***
## lot          1.24e+00   3.10e-01    4.02  7.4e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 60800 on 311 degrees of freedom
## Multiple R-squared:  0.811,  Adjusted R-squared:  0.806 
## F-statistic:  167 on 8 and 311 DF,  p-value: <2e-16

# The variables 'bathrooms' and 'garage' still failed to pass the significance test, therefore we try to drop one more variable and evaluate which is the best to be dropped.

drop1(lm.step)
## Single term deletions
## 
## Model:
## price ~ area + bedrooms + bathrooms + garage + year + quality + 
##     lot
##           Df Sum of Sq      RSS  AIC
## <none>                 1.15e+12 7059
## area       1  4.16e+11 1.57e+12 7156
## bedrooms   1  1.99e+10 1.17e+12 7062
## bathrooms  1  8.90e+09 1.16e+12 7059
## garage     1  1.22e+10 1.16e+12 7060
## year       1  1.37e+11 1.29e+12 7093
## quality    2  4.03e+11 1.55e+12 7151
## lot        1  5.97e+10 1.21e+12 7073

# We can see that the increase of AIC will be the least when dropping the variable 'bathrooms', so drop it and do regression again.

lm.drop = update(lm.step, . ~ . - bathrooms)
summary(lm.drop)
## 
## Call:
## lm(formula = price ~ area + bedrooms + garage + year + quality + 
##     lot, data = training)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -213218  -31040   -2906   25497  293179 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -3.07e+06   4.84e+05   -6.34  7.9e-10 ***
## area         9.90e+01   8.10e+00   12.22  < 2e-16 ***
## bedrooms    -8.16e+03   4.18e+03   -1.96    0.051 .  
## garage       1.29e+04   7.13e+03    1.81    0.072 .  
## year         1.59e+03   2.47e+02    6.43  4.9e-10 ***
## quality.L    1.09e+05   1.26e+04    8.64  3.1e-16 ***
## quality.Q    4.96e+04   6.16e+03    8.05  1.8e-14 ***
## lot          1.27e+00   3.10e-01    4.11  5.1e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 61000 on 312 degrees of freedom
## Multiple R-squared:  0.81,   Adjusted R-squared:  0.806 
## F-statistic:  190 on 7 and 312 DF,  p-value: <2e-16

#'bedrooms' and 'garage' are no longer significant at 5% level. So make an attempt to drop them too.

drop1(lm.drop)
## Single term deletions
## 
## Model:
## price ~ area + bedrooms + garage + year + quality + lot
##          Df Sum of Sq      RSS  AIC
## <none>                1.16e+12 7059
## area      1  5.55e+11 1.71e+12 7183
## bedrooms  1  1.42e+10 1.17e+12 7061
## garage    1  1.21e+10 1.17e+12 7061
## year      1  1.54e+11 1.31e+12 7097
## quality   2  4.02e+11 1.56e+12 7151
## lot       1  6.27e+10 1.22e+12 7074

lm.drop2 = update(lm.drop, . ~ . - garage)
summary(lm.drop2)
## 
## Call:
## lm(formula = price ~ area + bedrooms + year + quality + lot, 
##     data = training)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -215137  -30645   -1748   24441  293519 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -3.27e+06   4.73e+05   -6.90  2.9e-11 ***
## area         1.01e+02   8.05e+00   12.55  < 2e-16 ***
## bedrooms    -7.67e+03   4.18e+03   -1.83    0.068 .  
## year         1.70e+03   2.40e+02    7.06  1.1e-11 ***
## quality.L    1.13e+05   1.25e+04    9.09  < 2e-16 ***
## quality.Q    5.06e+04   6.16e+03    8.22  5.5e-15 ***
## lot          1.34e+00   3.09e-01    4.35  1.8e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 61200 on 313 degrees of freedom
## Multiple R-squared:  0.808,  Adjusted R-squared:  0.804 
## F-statistic:  219 on 6 and 313 DF,  p-value: <2e-16

#'bedrooms' is still insignificant, so drop it anyway.

lm.opt = update(lm.drop2, . ~ . - bedrooms)
summary(lm.opt)
## 
## Call:
## lm(formula = price ~ area + year + quality + lot, data = training)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -226104  -30361   -2895   21603  297610 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -3.23e+06   4.75e+05   -6.81  5.1e-11 ***
## area         9.38e+01   7.03e+00   13.34  < 2e-16 ***
## year         1.68e+03   2.41e+02    6.96  2.0e-11 ***
## quality.L    1.16e+05   1.24e+04    9.35  < 2e-16 ***
## quality.Q    5.31e+04   6.03e+03    8.80  < 2e-16 ***
## lot          1.30e+00   3.09e-01    4.22  3.3e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 61400 on 314 degrees of freedom
## Multiple R-squared:  0.806,  Adjusted R-squared:  0.803 
## F-statistic:  261 on 5 and 314 DF,  p-value: <2e-16

All of the remaining variable are significant, so the best model should be:

price = -3232464.60 + 93.78 area + 1675.84 year + 116112.31 quality.L + 53066.14 quality.Q + 1.30 lot

       (474861.58)        (7.03)        (240.89)        (12416.79)        (6028.18)        (0.31)

(ii) Assess your model's ability to predict based on the validation data set.

# Compute the predictions of validation dataset using lm.opt model, and validate the accuracy with the actual price data.

pred = predict(lm.opt, validation[, c(3, 9, 10, 12)])

# Average absolute prediction error

mean(abs(pred - validation[, 2])/validation[, 2])
## [1] 0.147

# Test whether there is a significant difference between the true and the predicted.

t.test(pred, validation[, 2])
## 
##  Welch Two Sample t-test
## 
## data:  pred and validation[, 2]
## t = 0.0139, df = 401.7, p-value = 0.9889
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -26340  26715
## sample estimates:
## mean of x mean of y 
##    271942    271754
chisq.test(pred, validation[, 2], correct = T)
## Warning: Chi-squared approximation may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  pred and validation[, 2]
## X-squared = 31714, df = 31557, p-value = 0.2655

No significant difference between them. So the model's predictive validity could be accepted.

(iii) Perform appropriate diagnostic checks to evaluate outliers and assess their influence.

In order to perform a diagnosis of outliers against the linear regression model lm.opt, we refer a comprehensive diagnostic function given in the Xue Yi's book (p. 354)

Remember, it is according to the model lm.opt based on the training data, rather than on the whole data or validation data, that we consider the influence of the outliers. therefore, the outliers we find below are only from training data.

source("D:\\Rworkspace\\Reg_Diag.R")
diag = Reg_Diag(lm.opt)
diag
##      residual s1   standard s2    student s3 hat_matrix s4     DFFITS s5 cooks_distance s6 COVRATIO s7
## 114  -70451.6    -1.1673594    -1.1680364      0.034279    -2.201e-01         8.062e-03      1.0283   
## 515   -2973.5    -0.0487508    -0.0486733      0.013618    -5.719e-03         5.469e-06      1.0333   
## 182  -22638.2    -0.3703335    -0.3698241      0.009219    -3.567e-02         2.127e-04      1.0261   
## 198   -1798.6    -0.0294050    -0.0293582      0.008047    -2.644e-03         1.169e-06      1.0276   
## 11  -149312.2    -2.5016735  * -2.5229559  *   0.055484  * -6.115e-01  *      6.127e-02      0.9564   
## 388   14434.7     0.2365357     0.2361797      0.012574     2.665e-02         1.187e-04      1.0312   
## 85    -5864.0    -0.0968391    -0.0966863      0.027771    -1.634e-02         4.465e-05      1.0483   
## 165  -78070.7    -1.2837426    -1.2850735      0.019382    -1.807e-01         5.429e-03      1.0072   
## 308  -13791.1    -0.2258654    -0.2255238      0.011502    -2.433e-02         9.893e-05      1.0302   
## 302  -28953.9    -0.4741392    -0.4735532      0.011258    -5.053e-02         4.266e-04      1.0265   
## 10    11167.2     0.1846746     0.1843903      0.030491     3.270e-02         1.788e-04      1.0507   
## 490   -9971.7    -0.1634503    -0.1631968      0.013170    -1.885e-02         5.942e-05      1.0324   
## 180  -13729.6    -0.2245631    -0.2242232      0.008899    -2.125e-02         7.547e-05      1.0275   
## 232  -71945.2    -1.1782372    -1.1789686      0.011408    -1.266e-01         2.670e-03      1.0040   
## 499  -13331.9    -0.2183272    -0.2179958      0.011335    -2.334e-02         9.108e-05      1.0301   
## 92  -131230.3    -2.1695238  * -2.1824858  *   0.029895    -3.831e-01  *      2.417e-02      0.9597   
## 429   18847.0     0.3090166     0.3085711      0.013719     3.639e-02         2.214e-04      1.0316   
## 432   -1095.3    -0.0179507    -0.0179221      0.012904    -2.049e-03         7.020e-07      1.0326   
## 344   11867.8     0.1956086     0.1953088      0.024006     3.063e-02         1.569e-04      1.0436   
## 248  -14260.0    -0.2331806    -0.2328292      0.008412    -2.144e-02         7.688e-05      1.0269   
## 16   146890.3     2.4133749  *  2.4321918  *   0.017763     3.271e-01  *      1.755e-02      0.9275   
## 194   40790.2     0.6690842     0.6684947      0.014560     8.126e-02         1.102e-03      1.0256   
## 54    -7615.1    -0.1251510    -0.1249547      0.018328    -1.707e-02         4.874e-05      1.0380   
## 243  -31119.3    -0.5088549    -0.5082536      0.008368    -4.669e-02         3.642e-04      1.0228   
## 437   15703.2     0.2573522     0.2569692      0.012808     2.927e-02         1.432e-04      1.0312   
## 382  -36389.3    -0.5948100    -0.5941970      0.007637    -5.213e-02         4.538e-04      1.0202   
## 249  -22675.3    -0.3712811    -0.3707708      0.011038    -3.917e-02         2.564e-04      1.0280   
## 147  100843.7     1.6552381     1.6598577      0.015861     2.107e-01         7.360e-03      0.9827   
## 229   25251.8     0.4137329     0.4131862      0.012300     4.611e-02         3.553e-04      1.0286   
## 286   36694.9     0.6116363     0.6110256      0.045659  *  1.337e-01         2.983e-03      1.0605   
## 475   -2503.6    -0.0410231    -0.0409579      0.012437    -4.596e-03         3.532e-06      1.0321   
## 319   13055.4     0.2139868     0.2136614      0.013068     2.459e-02         1.011e-04      1.0319   
## 46   -13726.4    -0.2248707    -0.2245305      0.012070    -2.482e-02         1.030e-04      1.0308   
## 392   31085.3     0.5108376     0.5102356      0.018198     6.947e-02         8.061e-04      1.0331   
## 191   15408.3     0.2542799     0.2539008      0.026431     4.183e-02         2.926e-04      1.0457   
## 351  -38227.4    -0.6245224    -0.6239148      0.006582    -5.078e-02         4.307e-04      1.0185   
## 112  -47684.4    -0.7869944    -0.7865163      0.026607    -1.300e-01         2.822e-03      1.0349   
## 450   21572.3     0.3535606     0.3530675      0.012938     4.042e-02         2.731e-04      1.0302   
## 69   116885.6     1.9336224     1.9421383      0.031146     3.482e-01  *      2.003e-02      0.9791   
## 189   27584.7     0.4526240     0.4520502      0.015213     5.619e-02         5.275e-04      1.0310   
## 176    7028.2     0.1151586     0.1149775      0.012412     1.289e-02         2.778e-05      1.0319   
## 419   61717.5     1.0110094     1.0110452      0.011933     1.111e-01         2.057e-03      1.0116   
## 380  -43502.1    -0.7116219    -0.7110614      0.009164    -6.838e-02         7.806e-04      1.0188   
## 435  -14491.4    -0.2373306    -0.2369736      0.011460    -2.552e-02         1.088e-04      1.0300   
## 453  -16571.3    -0.2722881    -0.2718862      0.017947    -3.676e-02         2.258e-04      1.0365   
## 38   -61181.8    -1.0098951    -1.0099272      0.026868    -1.678e-01         4.693e-03      1.0272   
## 441     852.1     0.0139678     0.0139455      0.013305     1.619e-03         4.385e-07      1.0331   
## 83    -2317.5    -0.0383026    -0.0382416      0.029376    -6.653e-03         7.400e-06      1.0501   
## 213   30446.1     0.4978545     0.4972574      0.008396     4.576e-02         3.498e-04      1.0231   
## 468   -5464.2    -0.0901905    -0.0900479      0.026765    -1.493e-02         3.728e-05      1.0472   
## 140   92679.0     1.5218728     1.5250825      0.016702     1.988e-01         6.557e-03      0.9916   
## 328   -8206.3    -0.1341317    -0.1339218      0.007538    -1.167e-02         2.277e-05      1.0267   
## 307  -26211.6    -0.4300714    -0.4295125      0.015113    -5.321e-02         4.730e-04      1.0313   
## 482  -30124.4    -0.4937255    -0.4931301      0.012933    -5.645e-02         5.323e-04      1.0279   
## 480   -5023.6    -0.0823438    -0.0822134      0.013142    -9.488e-03         1.505e-05      1.0328   
## 177  -89933.1    -1.5284518    -1.5317246      0.082059  * -4.580e-01  *      3.481e-02      1.0618   
## 96   170808.2     3.0258173  *  3.0660254  *   0.155087  *  1.314e+00  *      2.801e-01  *   1.0102   
## 374  -34799.5    -0.5699256    -0.5693119      0.011469    -6.132e-02         6.281e-04      1.0248   
## 357   -5298.8    -0.0867153    -0.0865782      0.010001    -8.702e-03         1.266e-05      1.0295   
## 45   -15021.1    -0.2466445    -0.2462753      0.016581    -3.198e-02         1.710e-04      1.0353   
## 117    4493.7     0.0741132     0.0739957      0.025236     1.191e-02         2.370e-05      1.0456   
## 154    3869.8     0.0636607     0.0635597      0.020243     9.136e-03         1.396e-05      1.0403   
## 295   -4192.9    -0.0685333    -0.0684246      0.007557    -5.971e-03         5.961e-06      1.0270   
## 26   -48552.4    -0.7945501    -0.7940826      0.009949    -7.960e-02         1.057e-03      1.0172   
## 387   31788.7     0.5210895     0.5204842      0.013268     6.035e-02         6.085e-04      1.0277   
## 311   19039.0     0.3113352     0.3108871      0.008454     2.871e-02         1.377e-04      1.0261   
## 186   81458.1     1.3309357     1.3325788      0.006806     1.103e-01         2.023e-03      0.9921   
## 274  -13814.4    -0.2261596    -0.2258176      0.010730    -2.352e-02         9.246e-05      1.0294   
## 415   31554.1     0.5169474     0.5163433      0.012131     5.722e-02         5.469e-04      1.0266   
## 193  -28400.2    -0.4684417    -0.4678587      0.025434    -7.558e-02         9.545e-04      1.0415   
## 179   51110.2     0.8408282     0.8404349      0.020331     1.211e-01         2.445e-03      1.0265   
## 211   81112.6     1.3581479     1.3599840      0.054282  *  3.258e-01  *      1.765e-02      1.0404   
## 381  -42092.4    -0.6905964    -0.6900201      0.014995    -8.514e-02         1.210e-03      1.0254   
## 135  186273.2     3.0492204  *  3.0904601  *   0.010530     3.188e-01  *      1.649e-02      0.8602   
## 175   74398.9     1.2168882     1.2178240      0.008915     1.155e-01         2.220e-03      0.9997   
## 517   -8934.5    -0.1464422    -0.1462138      0.013072    -1.683e-02         4.734e-05      1.0324   
## 120 -140254.2    -2.3146912  * -2.3309748  *   0.026525    -3.848e-01  *      2.433e-02      0.9444   
## 354  -83639.5    -1.3662394    -1.3681347      0.006315    -1.091e-01         1.977e-03      0.9898   
## 138  145787.9     2.3864815  *  2.4045852  *   0.010522     2.480e-01         1.009e-02      0.9230   
## 50    39811.4     0.6595346     0.6589402      0.033907     1.234e-01         2.544e-03      1.0464   
## 195   -5360.0    -0.0875690    -0.0874305      0.006632    -7.144e-03         8.532e-06      1.0260   
## 76   -84382.3    -1.3951965    -1.3973110      0.030134    -2.463e-01         1.008e-02      1.0125   
## 489    6781.6     0.1111776     0.1110026      0.013458     1.296e-02         2.810e-05      1.0330   
## 133  100159.5     1.6404284     1.6448777      0.011562     1.779e-01         5.246e-03      0.9793   
## 111  -44027.9    -0.7259866    -0.7254387      0.024834    -1.158e-01         2.237e-03      1.0348   
## 149   57738.7     0.9470552     0.9468993      0.014485     1.148e-01         2.197e-03      1.0167   
## 443  -14770.9    -0.2421221    -0.2417588      0.013212    -2.797e-02         1.308e-04      1.0318   
## 340  -19492.9    -0.3204277    -0.3199694      0.018765    -4.425e-02         3.273e-04      1.0368   
## 368  -28372.4    -0.4644266    -0.4638458      0.010449    -4.767e-02         3.796e-04      1.0258   
## 301  -10801.2    -0.1772285    -0.1769549      0.015184    -2.197e-02         8.072e-05      1.0344   
## 315  -29350.6    -0.4803594    -0.4797702      0.010124    -4.852e-02         3.933e-04      1.0252   
## 153    2184.8     0.0360480     0.0359907      0.026034     5.884e-03         5.789e-06      1.0465   
## 123  -38543.9    -0.6518239    -0.6512258      0.072890  * -1.826e-01         5.567e-03      1.0906   
## 72   220417.8     3.6431630  *  3.7167581  *   0.029455     6.475e-01  *      6.713e-02      0.8105   
## 80   165038.4     2.7356931  *  2.7644770  *   0.035027     5.267e-01  *      4.528e-02      0.9140   
## 227  -71917.5    -1.1789939    -1.1797291      0.013434    -1.377e-01         3.155e-03      1.0061   
## 3     12885.5     0.2110092     0.2106879      0.011259     2.248e-02         8.450e-05      1.0301   
## 105 -103447.0    -1.7160777    -1.7214344      0.036523    -3.352e-01  *      1.861e-02      0.9998   
## 470    9742.9     0.1595657     0.1593179      0.011493     1.718e-02         4.934e-05      1.0307   
## 156   37150.2     0.6101399     0.6095290      0.017026     8.022e-02         1.075e-03      1.0296   
## 109 -127949.6    -2.1139270  * -2.1257386  *   0.028646    -3.650e-01  *      2.196e-02      0.9629   
## 246   74615.6     1.2192267     1.2201754      0.006954     1.021e-01         1.735e-03      0.9976   
## 107  -37902.4    -0.6260616    -0.6254544      0.028193    -1.065e-01         1.895e-03      1.0411   
## 438   11491.3     0.1882318     0.1879424      0.011835     2.057e-02         7.073e-05      1.0308   
## 389   15525.7     0.2544079     0.2540287      0.012538     2.862e-02         1.370e-04      1.0310   
## 183   51970.6     0.8520499     0.8516772      0.013575     9.991e-02         1.665e-03      1.0191   
## 296    6966.6     0.1138276     0.1136486      0.006820     9.417e-03         1.483e-05      1.0261   
## 342   -2461.8    -0.0403339    -0.0402697      0.012225    -4.480e-03         3.356e-06      1.0319   
## 142   60020.6     0.9897429     0.9897107      0.024930     1.583e-01         4.174e-03      1.0260   
## 141   55503.0     0.9114462     0.9111998      0.016782     1.190e-01         2.363e-03      1.0204   
## 414    5121.3     0.0840404     0.0839074      0.015408     1.050e-02         1.842e-05      1.0351   
## 90    17558.7     0.2897738     0.2893507      0.026475     4.772e-02         3.806e-04      1.0454   
## 161  104619.8     1.7178335     1.7232124      0.016566     2.237e-01         8.285e-03      0.9794   
## 240  -82826.1    -1.3572789    -1.3591086      0.012640    -1.538e-01         3.931e-03      0.9966   
## 170   21694.2     0.3562068     0.3557110      0.016523     4.611e-02         3.553e-04      1.0339   
## 322   10230.5     0.1677311     0.1674713      0.013616     1.968e-02         6.473e-05      1.0328   
## 55    -4483.8    -0.0766227    -0.0765013      0.092064  * -2.436e-02         9.922e-05      1.1226   
## 201  -47249.6    -0.7828589    -0.7823752      0.034152    -1.471e-01         3.612e-03      1.0431   
## 157   79330.0     1.2975946     1.2990142      0.008993     1.237e-01         2.547e-03      0.9959   
## 108   70760.6     1.1803047     1.1810466      0.047041  *  2.624e-01         1.146e-02      1.0415   
## 181   19698.9     0.3218236     0.3213638      0.006589     2.617e-02         1.145e-04      1.0241   
## 272  -52708.1    -0.8623377    -0.8619848      0.009442    -8.416e-02         1.181e-03      1.0145   
## 137   24851.5     0.4074538     0.4069120      0.013660     4.789e-02         3.832e-04      1.0302   
## 395  -11070.9    -0.1843561    -0.1840723      0.043848  * -3.942e-02         2.598e-04      1.0654   
## 25    34588.3     0.5871035     0.5864899      0.079743  *  1.726e-01         4.978e-03      1.1004   
## 290    5539.7     0.0909607     0.0908170      0.016566     1.179e-02         2.323e-05      1.0363   
## 474   20388.9     0.3341532     0.3336800      0.012864     3.809e-02         2.425e-04      1.0304   
## 200   -2833.8    -0.0463498    -0.0462761      0.008884    -4.381e-03         3.209e-06      1.0284   
## 332  -50230.8    -0.8203521    -0.8199239      0.005926    -6.331e-02         6.687e-04      1.0123   
## 456   40446.8     0.6629786     0.6623858      0.013155     7.648e-02         9.765e-04      1.0243   
## 110  -29734.8    -0.4904974    -0.4899035      0.025603    -7.941e-02         1.054e-03      1.0413   
## 128 -115706.8    -1.9205012    -1.9288022      0.037572  * -3.811e-01  *      2.400e-02      0.9866   
## 116    8552.6     0.1410823     0.1408620      0.025626     2.284e-02         8.725e-05      1.0457   
## 127 -144731.2    -2.3943861  * -2.4126976  *   0.031242    -4.333e-01  *      3.081e-02      0.9421   
## 386   19867.3     0.3259623     0.3254979      0.015029     4.021e-02         2.702e-04      1.0328   
## 257  -92184.2    -1.5109625    -1.5140689      0.013072    -1.743e-01         5.040e-03      0.9886   
## 271  -83527.8    -1.3714333    -1.3733671      0.016460    -1.777e-01         5.246e-03      0.9997   
## 518  -39272.5    -0.6515769    -0.6509788      0.036782    -1.272e-01         2.702e-03      1.0497   
## 451    -381.4    -0.0062624    -0.0062524      0.016517    -8.103e-04         1.098e-07      1.0364   
## 14   -31560.1    -0.5208939    -0.5202886      0.026676    -8.613e-02         1.239e-03      1.0418   
## 169   21526.8     0.3518701     0.3513787      0.007633     3.082e-02         1.587e-04      1.0247   
## 51    35287.8     0.5818907     0.5812769      0.024909     9.291e-02         1.442e-03      1.0386   
## 188   70276.1     1.1484485     1.1490341      0.007176     9.769e-02         1.589e-03      1.0011   
## 210  -32504.5    -0.5420191    -0.5414086      0.046463  * -1.195e-01         2.386e-03      1.0630   
## 369  -21385.3    -0.3499932    -0.3495037      0.010101    -3.531e-02         2.083e-04      1.0273   
## 291   11211.8     0.1837372     0.1834543      0.012723     2.083e-02         7.251e-05      1.0318   
## 224   49651.0     0.8114958     0.8110535      0.007424     7.014e-02         8.209e-04      1.0141   
## 331  -33818.6    -0.5542196    -0.5536072      0.012752    -6.292e-02         6.612e-04      1.0264   
## 159   55588.1     0.9093182     0.9090668      0.009142     8.732e-02         1.271e-03      1.0126   
## 457    9292.4     0.1540917     0.1538519      0.035768     2.963e-02         1.468e-04      1.0567   
## 280  -35659.9    -0.5885329    -0.5879194      0.026583    -9.716e-02         1.577e-03      1.0402   
## 465   13367.6     0.2190123     0.2186800      0.012250     2.435e-02         9.915e-05      1.0310   
## 89    38753.6     0.6396147     0.6390118      0.026653     1.057e-01         1.867e-03      1.0391   
## 59    40622.6     0.6703629     0.6697741      0.026370     1.102e-01         2.029e-03      1.0380   
## 427   15165.4     0.2488295     0.2484574      0.015117     3.078e-02         1.584e-04      1.0337   
## 478   37175.3     0.6093076     0.6086965      0.013006     6.987e-02         8.154e-04      1.0255   
## 204    1325.3     0.0216643     0.0216298      0.007830     1.921e-03         6.173e-07      1.0274   
## 391  -25877.2    -0.4253948    -0.4248393      0.018862    -5.890e-02         5.798e-04      1.0353   
## 428   32207.7     0.5279566     0.5273494      0.013263     6.114e-02         6.244e-04      1.0275   
## 53   -41614.9    -0.6816866    -0.6811044      0.011886    -7.470e-02         9.316e-04      1.0225   
## 266  -81964.2    -1.3409586    -1.3426717      0.009404    -1.308e-01         2.845e-03      0.9941   
## 277  -24220.0    -0.3955315    -0.3949996      0.005822    -3.023e-02         1.527e-04      1.0222   
## 373   -3986.5    -0.0651759    -0.0650725      0.008048    -5.861e-03         5.744e-06      1.0275   
## 219  -87413.1    -1.4437513    -1.4462588      0.028042    -2.457e-01         1.002e-02      1.0076   
## 511   82930.9     1.3786091     1.3805966      0.040533  *  2.838e-01  *      1.338e-02      1.0244   
## 497  -42300.1    -0.6963889    -0.6958167      0.021729    -1.037e-01         1.795e-03      1.0323   
## 486  -46565.7    -0.7635104    -0.7630022      0.013763    -9.013e-02         1.356e-03      1.0221   
## 214   -2200.9    -0.0360243    -0.0359670      0.010320    -3.673e-03         2.255e-06      1.0299   
## 19     -640.0    -0.0105171    -0.0105003      0.018140    -1.427e-03         3.406e-07      1.0382   
## 318  -66242.8    -1.0827313    -1.0830295      0.007535    -9.437e-02         1.483e-03      1.0043   
## 253  -84588.5    -1.3877129    -1.3897696      0.014849    -1.706e-01         4.838e-03      0.9972   
## 268  -46276.1    -0.7611085    -0.7605975      0.019834    -1.082e-01         1.954e-03      1.0285   
## 190  -21816.5    -0.3564795    -0.3559835      0.006933    -2.974e-02         1.479e-04      1.0239   
## 396  -29838.2    -0.4922637    -0.4916690      0.025844    -8.008e-02         1.071e-03      1.0415   
## 412   46142.2     0.7567405     0.7562245      0.014217     9.082e-02         1.376e-03      1.0228   
## 35   -45023.8    -0.7365125    -0.7359747      0.009162    -7.077e-02         8.360e-04      1.0181   
## 226  -72769.1    -1.1934936    -1.1943036      0.014325    -1.440e-01         3.450e-03      1.0063   
## 202  -21875.2    -0.3607160    -0.3602158      0.024888    -5.755e-02         5.535e-04      1.0427   
## 288  -14450.2    -0.2366942    -0.2363381      0.011788    -2.581e-02         1.114e-04      1.0304   
## 477   -5965.8    -0.0978068    -0.0976524      0.013553    -1.145e-02         2.190e-05      1.0331   
## 196  -31071.1    -0.5082934    -0.5076922      0.009252    -4.906e-02         4.021e-04      1.0238   
## 309   -6793.6    -0.1111356    -0.1109607      0.009221    -1.070e-02         1.916e-05      1.0286   
## 28    -2962.3    -0.0485005    -0.0484234      0.010876    -5.078e-03         4.311e-06      1.0305   
## 263  -28222.4    -0.4622708    -0.4616912      0.011729    -5.030e-02         4.227e-04      1.0272   
## 34   -52460.2    -0.8585693    -0.8582091      0.010107    -8.672e-02         1.254e-03      1.0153   
## 261   14722.4     0.2410795     0.2407176      0.011181     2.560e-02         1.095e-04      1.0297   
## 327  -18631.8    -0.3051085    -0.3046674      0.011262    -3.252e-02         1.767e-04      1.0291   
## 221    1757.4     0.0287360     0.0286902      0.008317     2.628e-03         1.154e-06      1.0279   
## 121  -50264.6    -0.8317056    -0.8312963      0.031579    -1.501e-01         3.759e-03      1.0387   
## 37   -84613.4    -1.4141556    -1.4164197      0.050787  * -3.276e-01  *      1.783e-02      1.0335   
## 251  -73908.3    -1.2073728    -1.2082566      0.006465    -9.746e-02         1.581e-03      0.9977   
## 171   -2503.6    -0.0410516    -0.0409863      0.013797    -4.848e-03         3.929e-06      1.0335   
## 218   44551.2     0.7315896     0.7310471      0.016752     9.542e-02         1.520e-03      1.0261   
## 144  197592.3     3.2931908  *  3.3462376  *   0.045479  *  7.304e-01  *      8.612e-02      0.8648   
## 304   15408.5     0.2519182     0.2515422      0.008067     2.268e-02         8.602e-05      1.0264   
## 136  127998.4     2.0905835  *  2.1019315  *   0.006075     1.643e-01         4.452e-03      0.9428   
## 160   90160.0     1.4761586     1.4789467      0.010898     1.552e-01         4.001e-03      0.9884   
## 431   15418.1     0.2524908     0.2521140      0.011335     2.699e-02         1.218e-04      1.0298   
## 403   40063.7     0.6566219     0.6560260      0.012921     7.506e-02         9.406e-04      1.0242   
## 73   297609.9  *  4.9227472  *  5.1162949  *   0.030921     9.139e-01  *      1.289e-01      0.6496  *
## 336  -10742.6    -0.1759674    -0.1756957      0.011823    -1.922e-02         6.175e-05      1.0309   
## 56    13379.4     0.2249509     0.2246105      0.062061  *  5.778e-02         5.580e-04      1.0857   
## 103 -226103.7    -3.8105642  * -3.8956312  *   0.066495  * -1.040e+00  *      1.724e-01      0.8219   
## 15    18491.8     0.3027413     0.3023029      0.010778     3.156e-02         1.664e-04      1.0286   
## 98    55182.2     0.9133770     0.9131353      0.032218     1.666e-01         4.629e-03      1.0366   
## 408   -6555.7    -0.1074753    -0.1073060      0.013493    -1.255e-02         2.633e-05      1.0330   
## 416  -40735.9    -0.6705327    -0.6699439      0.021427    -9.913e-02         1.641e-03      1.0327   
## 436   13531.3     0.2220424     0.2217059      0.015332     2.767e-02         1.280e-04      1.0342   
## 206   45184.8     0.7411782     0.7406452      0.014584     9.010e-02         1.355e-03      1.0236   
## 247  143555.6     2.3507655  *  2.3679486  *   0.011217     2.522e-01         1.045e-02      0.9267   
## 454   29152.1     0.4804790     0.4798898      0.023953     7.518e-02         9.443e-04      1.0397   
## 71    74449.2     1.2326084     1.2336322      0.032727     2.269e-01         8.567e-03      1.0236   
## 5     18910.5     0.3088272     0.3083819      0.005844     2.364e-02         9.345e-05      1.0234   
## 346   -9373.7    -0.1531829    -0.1529445      0.007159    -1.299e-02         2.820e-05      1.0262   
## 93    94231.0     1.5548137     1.5583462      0.026109     2.552e-01         1.080e-02      0.9992   
## 439  -13552.2    -0.2222680    -0.2219313      0.014295    -2.673e-02         1.194e-04      1.0331   
## 24  -117203.1    -1.9201099    -1.9284046      0.012116    -2.136e-01         7.537e-03      0.9612   
## 2     81477.3     1.3313813     1.3330274      0.007002     1.119e-01         2.083e-03      0.9922   
## 178  116918.8     1.9130527     1.9212331      0.009637     1.895e-01         5.935e-03      0.9593   
## 293  -43068.6    -0.7031849    -0.7026177      0.005369    -5.162e-02         4.449e-04      1.0152   
## 335  -25902.0    -0.4235647    -0.4230105      0.008466    -3.909e-02         2.553e-04      1.0245   
## 350   -4319.7    -0.0708124    -0.0707001      0.013344    -8.222e-03         1.130e-05      1.0330   
## 151   58138.6     0.9602561     0.9601366      0.028071     1.632e-01         4.439e-03      1.0304   
## 501    2471.6     0.0405863     0.0405217      0.016701     5.281e-03         4.663e-06      1.0366   
## 1     17744.2     0.2906264     0.2902023      0.011624     3.147e-02         1.656e-04      1.0296   
## 469    -644.7    -0.0105739    -0.0105570      0.014417    -1.277e-03         2.726e-07      1.0342   
## 285   51638.7     0.8454108     0.8450258      0.010777     8.820e-02         1.298e-03      1.0164   
## 292   -2716.4    -0.0443812    -0.0443106      0.006706    -3.641e-03         2.216e-06      1.0262   
## 487   -2130.9    -0.0349802    -0.0349245      0.016055    -4.461e-03         3.328e-06      1.0359   
## 62   -47222.4    -0.7736070    -0.7731112      0.012051    -8.539e-02         1.217e-03      1.0200   
## 82    52239.9     0.8635852     0.8632347      0.029772     1.512e-01         3.814e-03      1.0357   
## 68   -71974.4    -1.2116320    -1.2125389      0.064392  * -3.181e-01  *      1.684e-02      1.0593   
## 63   -49063.9    -0.8241471    -0.8237251      0.060290  * -2.086e-01         7.263e-03      1.0707   
## 325  -50723.1    -0.8286194    -0.8282049      0.006471    -6.684e-02         7.453e-04      1.0126   
## 323   20970.4     0.3426821     0.3422000      0.007088     2.891e-02         1.397e-04      1.0243   
## 222  -49842.2    -0.8209119    -0.8204846      0.022582    -1.247e-01         2.595e-03      1.0295   
## 7    -31167.2    -0.5091102    -0.5085088      0.006307    -4.051e-02         2.742e-04      1.0207   
## 131 -182421.7    -3.0133399  * -3.0530048  *   0.028291    -5.209e-01  *      4.406e-02      0.8797   
## 338   -7012.5    -0.1146402    -0.1144599      0.007897    -1.021e-02         1.744e-05      1.0272   
## 447   17525.5     0.2876578     0.2872372      0.015840     3.644e-02         2.220e-04      1.0341   
## 75    48542.0     0.8003697     0.7999106      0.024709     1.273e-01         2.705e-03      1.0324   
## 88   -42745.9    -0.7051634    -0.7045978      0.025710    -1.145e-01         2.187e-03      1.0363   
## 313   -2957.0    -0.0484119    -0.0483350      0.010845    -5.061e-03         4.283e-06      1.0305   
## 411   34670.3     0.5681234     0.5675098      0.012564     6.401e-02         6.845e-04      1.0259   
## 264   21079.6     0.3456609     0.3451757      0.013938     4.104e-02         2.815e-04      1.0314   
## 184   53274.4     0.8702388     0.8699016      0.006334     6.945e-02         8.045e-04      1.0111   
## 418  -15135.2    -0.2483041    -0.2479327      0.014879    -3.047e-02         1.552e-04      1.0335   
## 378  -57436.4    -0.9384451    -0.9382663      0.006802    -7.765e-02         1.005e-03      1.0092   
## 283  -24139.1    -0.3951318    -0.3946002      0.010452    -4.055e-02         2.748e-04      1.0270   
## 242  -52921.3    -0.8670784    -0.8667348      0.012301    -9.673e-02         1.561e-03      1.0173   
## 520  -41021.0    -0.6727098    -0.6721223      0.014092    -8.036e-02         1.078e-03      1.0250   
## 300   27417.7     0.4496494     0.4490774      0.014187     5.387e-02         4.849e-04      1.0300   
## 152   32278.1     0.5291353     0.5285278      0.013352     6.148e-02         6.315e-04      1.0276   
## 95   144476.4     2.3887945  *  2.4069588  *   0.030125     4.242e-01  *      2.954e-02      0.9415   
## 48    -8576.5    -0.1413368    -0.1411160      0.023691    -2.198e-02         8.079e-05      1.0437   
## 522  -11466.0    -0.1882186    -0.1879292      0.016036    -2.399e-02         9.622e-05      1.0352   
## 330  -13056.7    -0.2137521    -0.2134270      0.010707    -2.220e-02         8.242e-05      1.0295   
## 343   -7404.8    -0.1216358    -0.1214448      0.017377    -1.615e-02         4.361e-05      1.0371   
## 41     7525.7     0.1233383     0.1231447      0.012855     1.405e-02         3.302e-05      1.0323   
## 370  -26961.1    -0.4414432    -0.4408765      0.010980    -4.645e-02         3.606e-04      1.0268   
## 279   15762.2     0.2590553     0.2586701      0.018416     3.543e-02         2.098e-04      1.0371   
## 326  -11686.6    -0.1908784    -0.1905853      0.006104    -1.494e-02         3.730e-05      1.0249   
## 377  -54207.5    -0.8865326    -0.8862296      0.008691    -8.298e-02         1.148e-03      1.0129   
## 287   11432.1     0.1868913     0.1866038      0.007910     1.666e-02         4.641e-05      1.0268   
## 462  -60501.1    -0.9945150    -0.9944977      0.018740    -1.374e-01         3.148e-03      1.0193   
## 173   39277.9     0.6423293     0.6417274      0.008573     5.967e-02         5.946e-04      1.0201   
## 491  -29564.5    -0.4851321    -0.4845406      0.015308    -6.041e-02         6.098e-04      1.0305   
## 345  -26549.8    -0.4340209    -0.4334593      0.007844    -3.854e-02         2.482e-04      1.0237   
## 270  -13102.0    -0.2147040    -0.2143775      0.012648    -2.426e-02         9.842e-05      1.0315   
## 424    8560.5     0.1405138     0.1402943      0.015887     1.783e-02         5.312e-05      1.0354   
## 8    -29057.1    -0.4768929    -0.4763055      0.015670    -6.010e-02         6.034e-04      1.0311   
## 379  -51392.0    -0.8395400    -0.8391444      0.006456    -6.764e-02         7.633e-04      1.0122   
## 349  -34180.9    -0.5608473    -0.5602342      0.015181    -6.956e-02         8.081e-04      1.0288   
## 79   181012.4     2.9843513  *  3.0227730  *   0.024570     4.797e-01  *      3.739e-02      0.8793   
## 9      7346.2     0.1208087     0.1206190      0.019588     1.705e-02         4.860e-05      1.0394   
## 97   -64526.9    -1.0713382    -1.0715912      0.038148  * -2.134e-01         7.587e-03      1.0367   
## 479    -406.2    -0.0066544    -0.0066438      0.012158    -7.371e-04         9.083e-08      1.0319   
## 506    7087.8     0.1163522     0.1161693      0.016085     1.485e-02         3.689e-05      1.0357   
## 132  -12287.1    -0.2036829    -0.2033718      0.035126    -3.880e-02         2.517e-04      1.0556   
## 355  -12957.0    -0.2124016    -0.2120783      0.013331    -2.465e-02         1.016e-04      1.0322   
## 17   -10845.9    -0.1781720    -0.1778970      0.017497    -2.374e-02         9.422e-05      1.0368   
## 260   17669.8     0.2888327     0.2884107      0.007678     2.537e-02         1.076e-04      1.0256   
## 168    5041.5     0.0823884     0.0822580      0.007195     7.002e-03         8.198e-06      1.0266   
## 461  -12852.7    -0.2107453    -0.2104243      0.013821    -2.491e-02         1.037e-04      1.0327   
## 167   44026.5     0.7246631     0.7241140      0.021333     1.069e-01         1.908e-03      1.0311   
## 455    5338.2     0.0874224     0.0872841      0.011402     9.374e-03         1.469e-05      1.0309   
## 86   125448.9     2.0796173  *  2.0907514  *   0.035180     3.992e-01  *      2.628e-02      0.9721   
## 265  -60335.1    -0.9878014    -0.9877632      0.010809    -1.033e-01         1.777e-03      1.0114   
## 324    3288.0     0.0537288     0.0536434      0.007066     4.525e-03         3.424e-06      1.0265   
## 65    16629.5     0.2726727     0.2722704      0.013818     3.223e-02         1.736e-04      1.0321   
## 466   32378.9     0.5590164     0.5584035      0.110484  *  1.968e-01         6.469e-03      1.1391   
## 393  -15376.6    -0.2536302    -0.2532520      0.025462    -4.094e-02         2.801e-04      1.0447   
## 33  -112604.1    -1.8473137    -1.8544745      0.014840    -2.276e-01         8.568e-03      0.9690   
## 360   -7528.6    -0.1232585    -0.1230650      0.010809    -1.286e-02         2.767e-05      1.0302   
## 459   -4818.8    -0.0789428    -0.0788178      0.012048    -8.704e-03         1.267e-05      1.0316   
## 276  -79637.7    -1.3014389    -1.3028835      0.007183    -1.108e-01         2.042e-03      0.9939   
## 44      -40.5    -0.0006654    -0.0006643      0.017519    -8.871e-05         1.316e-09      1.0375   
## 148  105617.5     1.7616293     1.7675783      0.046935  *  3.923e-01  *      2.547e-02      1.0076   
## 333   -3996.6    -0.0654262    -0.0653224      0.010644    -6.775e-03         7.675e-06      1.0302   
## 361  -37370.7    -0.6140910    -0.6134809      0.018079    -8.324e-02         1.157e-03      1.0306   
## 250  -65167.0    -1.0664508    -1.0666848      0.009959    -1.070e-01         1.907e-03      1.0074   
## 471   24623.2     0.4036747     0.4031361      0.013480     4.712e-02         3.711e-04      1.0300   
## 60   -81897.2    -1.3378401    -1.3395312      0.006404    -1.075e-01         1.923e-03      0.9913   
## 347   -1984.8    -0.0324240    -0.0323724      0.006455    -2.609e-03         1.138e-06      1.0259   
## 317  -23686.3    -0.3878976    -0.3873722      0.011354    -4.151e-02         2.880e-04      1.0281   
## 143   71657.8     1.1758315     1.1765508      0.015271     1.465e-01         3.574e-03      1.0081   
## 256  -20503.9    -0.3348403    -0.3343664      0.005792    -2.552e-02         1.089e-04      1.0231   
## 22     7266.3     0.1189929     0.1188059      0.011288     1.269e-02         2.694e-05      1.0307   
## 217   31094.5     0.5086419     0.5080406      0.009114     4.872e-02         3.966e-04      1.0236   
## 215  -86553.3    -1.4373878    -1.4398420      0.038612  * -2.886e-01  *      1.383e-02      1.0191   
## 225   19519.4     0.3189863     0.3185295      0.007189     2.711e-02         1.228e-04      1.0247   
## 254   15508.9     0.2567628     0.2563805      0.032669     4.712e-02         3.711e-04      1.0524   
## 504     273.2     0.0044763     0.0044692      0.012637     5.056e-04         4.274e-08      1.0324   
## 413   14350.8     0.2365177     0.2361618      0.023879     3.694e-02         2.281e-04      1.0431   
## 383   -3145.9    -0.0514506    -0.0513688      0.008740    -4.823e-03         3.890e-06      1.0283   
## 510   -5813.9    -0.0952135    -0.0950632      0.011418    -1.022e-02         1.745e-05      1.0309   
## 129 -152323.3    -2.5478716  * -2.5705216  *   0.052330  * -6.040e-01  *      5.974e-02      0.9489   
## 278  -11675.7    -0.1907189    -0.1904260      0.006287    -1.515e-02         3.836e-05      1.0251   
## 205   51507.3     0.8419843     0.8415930      0.007778     7.451e-02         9.262e-04      1.0135   
## 484    4234.9     0.0693644     0.0692544      0.011679     7.528e-03         9.476e-06      1.0313

# We also could use the built-in function of R-base below.

# influence.measures(lm.opt)

# Sum up the number of stars an observation got in Reg_Diag, indicating the degree of its outlying

starred <- function(row) {
    sum(as.numeric(gsub("\\*", "1", row)), na.rm = T)
}

diag.count = apply(diag[, seq(2, 14, by = 2)], 1, starred)

table(diag.count)
## diag.count
##   0   1   2   3   4   5 
## 278  13  11  12   4   2

By filtering out the observations with the condition that diag.count >= 5, 4, 3, we can rerun the regression and see how much it is improved.


real.est[names(which(diag.count >= 5)), ]
##    id  price area bedrooms bathrooms aircon garage pool year quality style   lot highway
## 96 96 600000 2344        4         3      1      2    0 1925       1     1 86004       0
## 73 73 920000 3857        4         5      1      3    0 1997       1     1 32793       0

training1 = training[!training$id %in% names(which(diag.count >= 
    5)), ]

lm.opt1 = update(lm.opt, data = training1)
summary(lm.opt1)
## 
## Call:
## lm(formula = price ~ area + year + quality + lot, data = training1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -216872  -29292   -3575   23381  232311 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -3.41e+06   4.58e+05   -7.43  1.0e-12 ***
## area         9.45e+01   6.73e+00   14.04  < 2e-16 ***
## year         1.77e+03   2.33e+02    7.59  3.7e-13 ***
## quality.L    1.05e+05   1.21e+04    8.70  < 2e-16 ***
## quality.Q    4.82e+04   5.77e+03    8.34  2.4e-15 ***
## lot          9.91e-01   3.04e-01    3.25   0.0013 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 58200 on 312 degrees of freedom
## Multiple R-squared:  0.811,  Adjusted R-squared:  0.808 
## F-statistic:  268 on 5 and 312 DF,  p-value: <2e-16

pred1 = predict(lm.opt1, validation[, c(3, 9, 10, 12)])

mean(abs(pred1 - validation[, 2])/validation[, 2])
## [1] 0.1478

Disappointedly, R-squared decreased, so did the significance of the coefficient “lot”, whereas the significance of “area” and “year” increased. What is more, the average absolute prediction error even increased.

Stricter filtering of outliers shows a little improvements of R-squared and prediction accuracy, but not very remarkable.


real.est[names(which(diag.count >= 4)), ]
##      id  price area bedrooms bathrooms aircon garage pool year quality style   lot highway
## 11   11 190000 2812        7         5      0      2    1 1966       3     7 56639       0
## 96   96 600000 2344        4         3      1      2    0 1925       1     1 86004       0
## 144 144 675000 3855        4         4      1      3    0 1996       2     7 35845       0
## 73   73 920000 3857        4         5      1      3    0 1997       1     1 32793       0
## 103 103 479000 5032        7         3      1      3    0 1989       1     7 22000       0
## 129 129 465000 4453        7         5      1      2    0 1974       1     7 15595       0

training2 = training[!training$id %in% names(which(diag.count >= 
    4)), ]

lm.opt2 = update(lm.opt, data = training2)
summary(lm.opt2)
## 
## Call:
## lm(formula = price ~ area + year + quality + lot, data = training2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -183491  -28349   -3497   22294  218535 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -3.25e+06   4.36e+05   -7.45  9.4e-13 ***
## area         1.01e+02   6.68e+00   15.12  < 2e-16 ***
## year         1.68e+03   2.21e+02    7.60  3.5e-13 ***
## quality.L    1.06e+05   1.17e+04    9.11  < 2e-16 ***
## quality.Q    5.31e+04   5.48e+03    9.68  < 2e-16 ***
## lot          9.37e-01   2.92e-01    3.21   0.0015 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 54700 on 308 degrees of freedom
## Multiple R-squared:  0.827,  Adjusted R-squared:  0.825 
## F-statistic:  295 on 5 and 308 DF,  p-value: <2e-16

pred2 = predict(lm.opt2, validation[, c(3, 9, 10, 12)])

mean(abs(pred2 - validation[, 2])/validation[, 2])
## [1] 0.1454



real.est[names(which(diag.count >= 3)), ]
##      id  price area bedrooms bathrooms aircon garage pool year quality style   lot highway
## 11   11 190000 2812        7         5      0      2    1 1966       3     7 56639       0
## 92   92 389900 2817        4         3      1      3    0 1996       1     7 31214       0
## 16   16 527000 3232        5         5      1      2    0 1984       2     6 21445       0
## 96   96 600000 2344        4         3      1      2    0 1925       1     1 86004       0
## 135 135 515000 2950        5         3      1      2    0 1969       2     1 21598       0
## 120 120 367000 2940        4         7      1      2    0 1988       1     7 22003       0
## 72   72 830000 3889        4         4      1      3    0 1991       1     7 28378       0
## 80   80 647000 2464        3         3      1      3    0 1992       1     1 31703       0
## 109 109 370000 2936        4         4      1      3    0 1987       1     7 16437       0
## 127 127 380000 3460        5         4      1      2    0 1972       1     1 18571       0
## 144 144 675000 3855        4         4      1      3    0 1996       2     7 35845       0
## 73   73 920000 3857        4         5      1      3    0 1997       1     1 32793       0
## 103 103 479000 5032        7         3      1      3    0 1989       1     7 22000       0
## 131 131 336000 3301        3         4      1      2    0 1977       1     3 18741       0
## 95   95 640000 2705        3         3      1      3    0 1994       1     1 22196       0
## 79   79 725000 3242        3         3      1      3    0 1989       1     1 27173       0
## 86   86 609000 2654        5         3      1      3    0 1997       1     1 12821       0
## 129 129 465000 4453        7         5      1      2    0 1974       1     7 15595       0

training3 = training[!training$id %in% names(which(diag.count >= 
    3)), ]

lm.opt3 = update(lm.opt, data = training3)
summary(lm.opt3)
## 
## Call:
## lm(formula = price ~ area + year + quality + lot, data = training3)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -114611  -25600   -3137   22629  146903 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -2.95e+06   3.64e+05   -8.08  1.6e-14 ***
## area         9.87e+01   5.68e+00   17.36  < 2e-16 ***
## year         1.53e+03   1.85e+02    8.28  4.4e-15 ***
## quality.L    1.09e+05   1.04e+04   10.50  < 2e-16 ***
## quality.Q    5.28e+04   4.95e+03   10.67  < 2e-16 ***
## lot          8.71e-01   2.45e-01    3.56  0.00043 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 45400 on 296 degrees of freedom
## Multiple R-squared:  0.857,  Adjusted R-squared:  0.854 
## F-statistic:  354 on 5 and 296 DF,  p-value: <2e-16

pred3 = predict(lm.opt3, validation[, c(3, 9, 10, 12)])

mean(abs(pred3 - validation[, 2])/validation[, 2])
## [1] 0.1412