av Erik och Tobbe
require(mosaic)
swim = fetchData("SwimRecords")
timeWomen = subset(swim, sex == "F")
mean(time, data = timeWomen)
## [1] 65.19
min(time, data = timeWomen)
## [1] 53.52
recordsBefore1920 = subset(swim, year < 1920)
mean(time, data = recordsBefore1920)
## [1] 73.84
min(time, data = recordsBefore1920)
## [1] 61.4
slowerThan60 = subset(swim, time > 60)
mean(time, data = slowerThan60)
## [1] 69.62
min(time, data = slowerThan60)
## [1] 60.2
mod = mm(wage ~ sector, data = CPS85)
9.50 Eftersom mm() ger medelvärdet för wage uppdelat i sektor så står svaret att finna i tabellen.
mod
##
## Groupwise Model Call:
## wage ~ sector
##
## Coefficients:
## clerical const manag manuf other prof sales
## 7.42 9.50 12.70 8.04 8.50 11.95 7.59
## service
## 6.54
12.70 Eftersom mm() ger medelvärdet för wage uppdelat i sektor så står svaret att finna i tabellen.
mod
##
## Groupwise Model Call:
## wage ~ sector
##
## Coefficients:
## clerical const manag manuf other prof sales
## 7.42 9.50 12.70 8.04 8.50 11.95 7.59
## service
## 6.54
service (6.53)
min(fitted(mod))
## [1] 6.537
2.20
sd(fitted(mod))
## [1] 2.197
4.65
sd(resid(mod))
## [1] 4.646
mod1 = mm(wage ~ 1, data = CPS85)
mod2 = mm(wage ~ sector, data = CPS85)
mod2
var(fitted(mod1))
## [1] 0
var(fitted(mod2))
## [1] 4.825
mod1
var(resid(mod1))
## [1] 26.41
var(resid(mod2))
## [1] 21.59
Tredje punkten eftersom det är varians som unikt har den egenskapen.
w = fetchData("CPS85")
9.02
mm(wage ~ 1, data = w)
##
## Groupwise Model Call:
## wage ~ 1
##
## Coefficients:
## all
## 9.02
7.88
mm(wage ~ 1, data = subset(w, sex == "F"))
##
## Groupwise Model Call:
## wage ~ 1
##
## Coefficients:
## all
## 7.88
9.40
mm(wage ~ 1, data = subset(w, married == "Married"))
##
## Groupwise Model Call:
## wage ~ 1
##
## Coefficients:
## all
## 9.4
7.68
mm(wage ~ 1, data = subset(w, married == "Married" & sex == "F"))
##
## Groupwise Model Call:
## wage ~ 1
##
## Coefficients:
## all
## 7.68
g = fetchData("Galton")
3.58
sd(height, data = g)
## [1] 3.583
3.58
mod0 = mm(height ~ 1, data = g)
res = resid(mod0)
sd(res)
## [1] 3.583
2.51
mod1 = mm(height ~ sex, data = g)
res1 = resid(mod1)
sd(res)
## [1] 3.583
mod1 (2.51 < 3.58)