Preparing new analysis to CES-D manuscript review

Loading required packages

require(foreign) # Read data stored SPSS
## Loading required package: foreign
require(psych)
## Loading required package: psych
#Setting Directory
setwd("~/CES-D")

#Importing SPSS file .sav
base.dat <- read.spss("PD10.sav", to.data.frame = T)
## Warning in read.spss("PD10.sav", to.data.frame = T): PD10.sav: Unrecognized
## record type 7, subtype 18 encountered in system file
## re-encoding from latin1
#Sum CESD itens in order to find NA
base.dat$scaleSum <- rowSums(base.dat[,267:286])

#Creating a subset for analysis without NA
base.CESD <- subset(base.dat, subset=!is.na(base.dat$scaleSum))

#Creating a subset only with CESD
fullScale  <- base.CESD[ , 267:286]
## KMO
KMO(fullScale)
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = fullScale)
## Overall MSA =  0.91
## MSA for each item = 
##  F1r  F2r  F3r  F4r  F5r  F6r  F7r  F8r  F9r F10r F11r F12r F13r F14r F15r 
## 0.92 0.91 0.93 0.73 0.93 0.93 0.95 0.78 0.95 0.93 0.92 0.85 0.91 0.94 0.87 
## F16r F17r F18r F19r F20r 
## 0.85 0.89 0.91 0.89 0.94
# Bartlett Test
bartlett.test(fullScale)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  fullScale
## Bartlett's K-squared = 23.704, df = 19, p-value = 0.2077
# Parallel Analysis
faParalel  <- fa.parallel.poly(fullScale, fm="minres", fa="both")
## Warning: fa.parallel.poly is deprecated. Please use the fa.parallel
## function with the cor='poly' option.
## 
## 
## 
##  See the graphic output for a description of the results

## Parallel analysis suggests that the number of factors =  4  and the number of components =  2
#Polycoric Correlation Matrix
polyAll <- polychoric(fullScale)

PCA - 2 components unrotated

PCA2u <- principal(polyAll$rho, nfactors = 2)
print.psych(PCA2u, digits=2, cut= .4)
## Principal Components Analysis
## Call: principal(r = polyAll$rho, nfactors = 2)
## Standardized loadings (pattern matrix) based upon correlation matrix
##        PC1   PC2   h2   u2 com
## F1r   0.61       0.41 0.59 1.2
## F2r   0.54       0.30 0.70 1.0
## F3r   0.59       0.39 0.61 1.2
## F4r         0.71 0.51 0.49 1.0
## F5r   0.63       0.40 0.60 1.0
## F6r   0.74       0.61 0.39 1.2
## F7r   0.63       0.41 0.59 1.0
## F8r         0.62 0.38 0.62 1.0
## F9r   0.69       0.50 0.50 1.1
## F10r  0.69       0.51 0.49 1.1
## F11r  0.62       0.42 0.58 1.2
## F12r        0.75 0.67 0.33 1.4
## F13r  0.41       0.21 0.79 1.4
## F14r  0.69       0.59 0.41 1.4
## F15r  0.63       0.42 0.58 1.1
## F16r        0.66 0.52 0.48 1.4
## F17r  0.62       0.39 0.61 1.0
## F18r  0.77       0.67 0.33 1.3
## F19r  0.71       0.54 0.46 1.1
## F20r  0.66       0.50 0.50 1.3
## 
##                        PC1  PC2
## SS loadings           6.89 2.46
## Proportion Var        0.34 0.12
## Cumulative Var        0.34 0.47
## Proportion Explained  0.74 0.26
## Cumulative Proportion 0.74 1.00
## 
## Mean item complexity =  1.2
## Test of the hypothesis that 2 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.06 
## 
## Fit based upon off diagonal values = 0.97
plot.psych(PCA2u)

PCA - 2 components rotated

PCA2 <- principal(polyAll$rho, nfactors = 2, rotate="oblimin")
## Loading required namespace: GPArotation
print.psych(PCA2, digits=2, cut= .4)
## Principal Components Analysis
## Call: principal(r = polyAll$rho, nfactors = 2, rotate = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
##        PC1   PC2   h2   u2 com
## F1r   0.66       0.41 0.59 1.5
## F2r   0.56       0.30 0.70 1.0
## F3r   0.60       0.39 0.61 1.0
## F4r         0.74 0.51 0.49 1.1
## F5r   0.66       0.40 0.60 1.0
## F6r   0.75       0.61 0.39 1.0
## F7r   0.66       0.41 0.59 1.0
## F8r         0.63 0.38 0.62 1.0
## F9r   0.70       0.50 0.50 1.0
## F10r  0.70       0.51 0.49 1.0
## F11r  0.63       0.42 0.58 1.0
## F12r        0.70 0.67 0.33 1.3
## F13r  0.45       0.21 0.79 1.7
## F14r  0.69       0.59 0.41 1.1
## F15r  0.65       0.42 0.58 1.0
## F16r        0.62 0.52 0.48 1.3
## F17r  0.65       0.39 0.61 1.1
## F18r  0.78       0.67 0.33 1.0
## F19r  0.72       0.54 0.46 1.0
## F20r  0.66       0.50 0.50 1.1
## 
##                        PC1  PC2
## SS loadings           7.20 2.15
## Proportion Var        0.36 0.11
## Cumulative Var        0.36 0.47
## Proportion Explained  0.77 0.23
## Cumulative Proportion 0.77 1.00
## 
##  With component correlations of 
##       PC1   PC2
## PC1  1.00 -0.31
## PC2 -0.31  1.00
## 
## Mean item complexity =  1.1
## Test of the hypothesis that 2 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.06 
## 
## Fit based upon off diagonal values = 0.97
plot.psych(PCA2)

PCA - 4 components unrotated

PCA4u <- principal(polyAll$rho, nfactors = 4)
print.psych(PCA4u, digits=2, cut= .4)
## Principal Components Analysis
## Call: principal(r = polyAll$rho, nfactors = 4)
## Standardized loadings (pattern matrix) based upon correlation matrix
##        PC1   PC3   PC4   PC2   h2   u2 com
## F1r         0.57             0.47 0.53 2.0
## F2r         0.72             0.57 0.43 1.2
## F3r         0.67             0.58 0.42 1.6
## F4r                     0.70 0.54 0.46 1.2
## F5r   0.46  0.53             0.50 0.50 2.1
## F6r         0.48  0.54       0.66 0.34 3.0
## F7r   0.50  0.50             0.51 0.49 2.1
## F8r                     0.63 0.46 0.54 1.3
## F9r   0.50  0.44             0.53 0.47 2.6
## F10r        0.45             0.51 0.49 3.3
## F11r        0.48  0.47       0.51 0.49 2.5
## F12r                    0.75 0.70 0.30 1.5
## F13r              0.53       0.34 0.66 1.4
## F14r  0.42        0.58       0.65 0.35 2.7
## F15r  0.78                   0.67 0.33 1.2
## F16r                    0.66 0.56 0.44 1.6
## F17r              0.66       0.52 0.48 1.4
## F18r  0.40        0.72       0.80 0.20 2.1
## F19r  0.75                   0.71 0.29 1.5
## F20r  0.63                   0.58 0.42 2.0
## 
##                        PC1  PC3  PC4  PC2
## SS loadings           3.11 3.02 2.87 2.38
## Proportion Var        0.16 0.15 0.14 0.12
## Cumulative Var        0.16 0.31 0.45 0.57
## Proportion Explained  0.27 0.27 0.25 0.21
## Cumulative Proportion 0.27 0.54 0.79 1.00
## 
## Mean item complexity =  1.9
## Test of the hypothesis that 4 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.06 
## 
## Fit based upon off diagonal values = 0.97
plot.psych(PCA4u)

PCA - 4 components rotated

PCA4 <- principal(polyAll$rho, nfactors = 4, rotate="oblimin")
print.psych(PCA4, digits=2, cut= .4)
## Principal Components Analysis
## Call: principal(r = polyAll$rho, nfactors = 4, rotate = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
##        PC4   PC3   PC1   PC2   h2   u2 com
## F1r         0.54             0.47 0.53 1.9
## F2r         0.75             0.57 0.43 1.1
## F3r         0.66             0.58 0.42 1.3
## F4r                     0.72 0.54 0.46 1.4
## F5r   0.43  0.47             0.50 0.50 2.1
## F6r               0.47       0.66 0.34 2.3
## F7r   0.47  0.44             0.51 0.49 2.1
## F8r                     0.65 0.46 0.54 1.5
## F9r   0.45                   0.53 0.47 2.0
## F10r                         0.51 0.49 3.0
## F11r        0.41  0.43       0.51 0.49 2.2
## F12r                    0.73 0.70 0.30 1.2
## F13r              0.57       0.34 0.66 1.4
## F14r              0.51       0.65 0.35 2.1
## F15r  0.83                   0.67 0.33 1.0
## F16r                    0.64 0.56 0.44 1.4
## F17r              0.66       0.52 0.48 1.1
## F18r              0.67       0.80 0.20 1.4
## F19r  0.77                   0.71 0.29 1.1
## F20r  0.61                   0.58 0.42 1.2
## 
##                        PC4  PC3  PC1  PC2
## SS loadings           3.29 2.89 2.86 2.35
## Proportion Var        0.16 0.14 0.14 0.12
## Cumulative Var        0.16 0.31 0.45 0.57
## Proportion Explained  0.29 0.25 0.25 0.21
## Cumulative Proportion 0.29 0.54 0.79 1.00
## 
##  With component correlations of 
##       PC4   PC3   PC1   PC2
## PC4  1.00  0.40  0.47 -0.27
## PC3  0.40  1.00  0.38 -0.20
## PC1  0.47  0.38  1.00 -0.20
## PC2 -0.27 -0.20 -0.20  1.00
## 
## Mean item complexity =  1.6
## Test of the hypothesis that 4 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is  0.06 
## 
## Fit based upon off diagonal values = 0.97
plot.psych(PCA4)

FA - 2 factors unrotated

fa2u <- fa.poly(fullScale, nfactors = 2, fm="minres")
print.psych(fa2u, digits=2, cut= .4)  
## Factor Analysis using method =  minres
## Call: fa.poly(x = fullScale, nfactors = 2, fm = "minres")
## Standardized loadings (pattern matrix) based upon correlation matrix
##        MR1   MR2   h2   u2 com
## F1r   0.62       0.30 0.70 1.2
## F2r   0.52       0.25 0.75 1.0
## F3r   0.56       0.33 0.67 1.0
## F4r         0.53 0.23 0.77 1.1
## F5r   0.61       0.34 0.66 1.0
## F6r   0.71       0.60 0.40 1.1
## F7r   0.62       0.35 0.65 1.0
## F8r         0.43 0.17 0.83 1.0
## F9r   0.67       0.46 0.54 1.0
## F10r  0.68       0.47 0.53 1.0
## F11r  0.58       0.38 0.62 1.0
## F12r        0.80 0.72 0.28 1.0
## F13r  0.42       0.14 0.86 1.4
## F14r  0.65       0.57 0.43 1.2
## F15r  0.65       0.39 0.61 1.0
## F16r        0.65 0.49 0.51 1.0
## F17r  0.67       0.38 0.62 1.1
## F18r  0.74       0.68 0.32 1.1
## F19r  0.73       0.52 0.48 1.0
## F20r  0.61       0.46 0.54 1.1
## 
##                        MR1  MR2
## SS loadings           6.46 1.74
## Proportion Var        0.32 0.09
## Cumulative Var        0.32 0.41
## Proportion Explained  0.79 0.21
## Cumulative Proportion 0.79 1.00
## 
##  With factor correlations of 
##       MR1   MR2
## MR1  1.00 -0.49
## MR2 -0.49  1.00
## 
## Mean item complexity =  1.1
## Test of the hypothesis that 2 factors are sufficient.
## 
## The degrees of freedom for the null model are  190  and the objective function was  8.85 with Chi Square of  4462.72
## The degrees of freedom for the model are 151  and the objective function was  1.51 
## 
## The root mean square of the residuals (RMSR) is  0.05 
## The df corrected root mean square of the residuals is  0.06 
## 
## The harmonic number of observations is  513 with the empirical chi square  472.48  with prob <  8.4e-35 
## The total number of observations was  513  with MLE Chi Square =  761.45  with prob <  3.5e-82 
## 
## Tucker Lewis Index of factoring reliability =  0.82
## RMSEA index =  0.09  and the 90 % confidence intervals are  0.083 0.095
## BIC =  -180.83
## Fit based upon off diagonal values = 0.98
## Measures of factor score adequacy             
##                                                 MR1  MR2
## Correlation of scores with factors             0.96 0.90
## Multiple R square of scores with factors       0.93 0.81
## Minimum correlation of possible factor scores  0.85 0.62
fa.diagram(fa2u)

FA - 2 factors

fa2 <- fa.poly(fullScale, nfactors = 2, rotate = "oblimin", fm="minres")
print.psych(fa2, digits=2, cut= .4)  
## Factor Analysis using method =  minres
## Call: fa.poly(x = fullScale, nfactors = 2, rotate = "oblimin", fm = "minres")
## Standardized loadings (pattern matrix) based upon correlation matrix
##        MR1   MR2   h2   u2 com
## F1r   0.62       0.30 0.70 1.2
## F2r   0.52       0.25 0.75 1.0
## F3r   0.56       0.33 0.67 1.0
## F4r         0.53 0.23 0.77 1.1
## F5r   0.61       0.34 0.66 1.0
## F6r   0.71       0.60 0.40 1.1
## F7r   0.62       0.35 0.65 1.0
## F8r         0.43 0.17 0.83 1.0
## F9r   0.67       0.46 0.54 1.0
## F10r  0.68       0.47 0.53 1.0
## F11r  0.58       0.38 0.62 1.0
## F12r        0.80 0.72 0.28 1.0
## F13r  0.42       0.14 0.86 1.4
## F14r  0.65       0.57 0.43 1.2
## F15r  0.65       0.39 0.61 1.0
## F16r        0.65 0.49 0.51 1.0
## F17r  0.67       0.38 0.62 1.1
## F18r  0.74       0.68 0.32 1.1
## F19r  0.73       0.52 0.48 1.0
## F20r  0.61       0.46 0.54 1.1
## 
##                        MR1  MR2
## SS loadings           6.46 1.74
## Proportion Var        0.32 0.09
## Cumulative Var        0.32 0.41
## Proportion Explained  0.79 0.21
## Cumulative Proportion 0.79 1.00
## 
##  With factor correlations of 
##       MR1   MR2
## MR1  1.00 -0.49
## MR2 -0.49  1.00
## 
## Mean item complexity =  1.1
## Test of the hypothesis that 2 factors are sufficient.
## 
## The degrees of freedom for the null model are  190  and the objective function was  8.85 with Chi Square of  4462.72
## The degrees of freedom for the model are 151  and the objective function was  1.51 
## 
## The root mean square of the residuals (RMSR) is  0.05 
## The df corrected root mean square of the residuals is  0.06 
## 
## The harmonic number of observations is  513 with the empirical chi square  472.48  with prob <  8.4e-35 
## The total number of observations was  513  with MLE Chi Square =  761.45  with prob <  3.5e-82 
## 
## Tucker Lewis Index of factoring reliability =  0.82
## RMSEA index =  0.09  and the 90 % confidence intervals are  0.083 0.095
## BIC =  -180.83
## Fit based upon off diagonal values = 0.98
## Measures of factor score adequacy             
##                                                 MR1  MR2
## Correlation of scores with factors             0.96 0.90
## Multiple R square of scores with factors       0.93 0.81
## Minimum correlation of possible factor scores  0.85 0.62
fa.diagram(fa2)

FA 4 factors

fa4u <- fa.poly(fullScale, nfactors = 4, fm="minres")
print.psych(fa4u, digits=2, cut= .4)
## Factor Analysis using method =  minres
## Call: fa.poly(x = fullScale, nfactors = 4, fm = "minres")
## Standardized loadings (pattern matrix) based upon correlation matrix
##        MR2   MR3   MR1   MR4   h2     u2 com
## F1r   0.65                   0.35 0.6456 1.1
## F2r   0.59                   0.31 0.6898 1.0
## F3r   0.63                   0.42 0.5815 1.2
## F4r         0.51             0.24 0.7553 1.7
## F5r   0.57                   0.38 0.6163 1.0
## F6r   0.54                   0.62 0.3786 1.6
## F7r   0.54                   0.39 0.6143 1.1
## F8r         0.41             0.16 0.8404 1.1
## F9r   0.47                   0.47 0.5331 1.4
## F10r  0.56                   0.49 0.5138 1.1
## F11r  0.46                   0.39 0.6076 1.3
## F12r        0.84             0.78 0.2194 1.0
## F13r                         0.14 0.8631 3.0
## F14r                         0.56 0.4401 3.5
## F15r                    0.83 0.66 0.3411 1.0
## F16r        0.63             0.47 0.5282 1.1
## F17r              0.66       0.49 0.5137 1.2
## F18r              0.94       0.99 0.0066 1.0
## F19r                    0.71 0.68 0.3151 1.1
## F20r                         0.48 0.5220 2.7
## 
##                        MR2  MR3  MR1  MR4
## SS loadings           3.63 1.90 2.06 1.89
## Proportion Var        0.18 0.09 0.10 0.09
## Cumulative Var        0.18 0.28 0.38 0.47
## Proportion Explained  0.38 0.20 0.22 0.20
## Cumulative Proportion 0.38 0.58 0.80 1.00
## 
##  With factor correlations of 
##       MR2   MR3   MR1   MR4
## MR2  1.00 -0.38  0.65  0.63
## MR3 -0.38  1.00 -0.42 -0.34
## MR1  0.65 -0.42  1.00  0.58
## MR4  0.63 -0.34  0.58  1.00
## 
## Mean item complexity =  1.5
## Test of the hypothesis that 4 factors are sufficient.
## 
## The degrees of freedom for the null model are  190  and the objective function was  8.85 with Chi Square of  4462.72
## The degrees of freedom for the model are 116  and the objective function was  0.8 
## 
## The root mean square of the residuals (RMSR) is  0.03 
## The df corrected root mean square of the residuals is  0.04 
## 
## The harmonic number of observations is  513 with the empirical chi square  235.04  with prob <  4.3e-10 
## The total number of observations was  513  with MLE Chi Square =  399.37  with prob <  8.6e-33 
## 
## Tucker Lewis Index of factoring reliability =  0.891
## RMSEA index =  0.07  and the 90 % confidence intervals are  0.062 0.076
## BIC =  -324.51
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy             
##                                                 MR2  MR3  MR1  MR4
## Correlation of scores with factors             0.93 0.92 1.00 0.91
## Multiple R square of scores with factors       0.87 0.84 0.99 0.83
## Minimum correlation of possible factor scores  0.73 0.67 0.98 0.66
fa.diagram(fa4u)

FA 4 factors

fa4 <- fa.poly(fullScale, nfactors = 4, rotate = "oblimin", fm="minres")
print.psych(fa4, digits=2, cut= .4)
## Factor Analysis using method =  minres
## Call: fa.poly(x = fullScale, nfactors = 4, rotate = "oblimin", fm = "minres")
## Standardized loadings (pattern matrix) based upon correlation matrix
##        MR2   MR3   MR1   MR4   h2     u2 com
## F1r   0.65                   0.35 0.6456 1.1
## F2r   0.59                   0.31 0.6898 1.0
## F3r   0.63                   0.42 0.5815 1.2
## F4r         0.51             0.24 0.7553 1.7
## F5r   0.57                   0.38 0.6163 1.0
## F6r   0.54                   0.62 0.3786 1.6
## F7r   0.54                   0.39 0.6143 1.1
## F8r         0.41             0.16 0.8404 1.1
## F9r   0.47                   0.47 0.5331 1.4
## F10r  0.56                   0.49 0.5138 1.1
## F11r  0.46                   0.39 0.6076 1.3
## F12r        0.84             0.78 0.2194 1.0
## F13r                         0.14 0.8631 3.0
## F14r                         0.56 0.4401 3.5
## F15r                    0.83 0.66 0.3411 1.0
## F16r        0.63             0.47 0.5282 1.1
## F17r              0.66       0.49 0.5137 1.2
## F18r              0.94       0.99 0.0066 1.0
## F19r                    0.71 0.68 0.3151 1.1
## F20r                         0.48 0.5220 2.7
## 
##                        MR2  MR3  MR1  MR4
## SS loadings           3.63 1.90 2.06 1.89
## Proportion Var        0.18 0.09 0.10 0.09
## Cumulative Var        0.18 0.28 0.38 0.47
## Proportion Explained  0.38 0.20 0.22 0.20
## Cumulative Proportion 0.38 0.58 0.80 1.00
## 
##  With factor correlations of 
##       MR2   MR3   MR1   MR4
## MR2  1.00 -0.38  0.65  0.63
## MR3 -0.38  1.00 -0.42 -0.34
## MR1  0.65 -0.42  1.00  0.58
## MR4  0.63 -0.34  0.58  1.00
## 
## Mean item complexity =  1.5
## Test of the hypothesis that 4 factors are sufficient.
## 
## The degrees of freedom for the null model are  190  and the objective function was  8.85 with Chi Square of  4462.72
## The degrees of freedom for the model are 116  and the objective function was  0.8 
## 
## The root mean square of the residuals (RMSR) is  0.03 
## The df corrected root mean square of the residuals is  0.04 
## 
## The harmonic number of observations is  513 with the empirical chi square  235.04  with prob <  4.3e-10 
## The total number of observations was  513  with MLE Chi Square =  399.37  with prob <  8.6e-33 
## 
## Tucker Lewis Index of factoring reliability =  0.891
## RMSEA index =  0.07  and the 90 % confidence intervals are  0.062 0.076
## BIC =  -324.51
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy             
##                                                 MR2  MR3  MR1  MR4
## Correlation of scores with factors             0.93 0.92 1.00 0.91
## Multiple R square of scores with factors       0.87 0.84 0.99 0.83
## Minimum correlation of possible factor scores  0.73 0.67 0.98 0.66
fa.diagram(fa4)

### Alfa de Cronbach
#factor? <- fullscale[, c("?")]
#alpha(factor?, check.keys = TRUE)